Cargando…
nucleAIzer: A Parameter-free Deep Learning Framework for Nucleus Segmentation Using Image Style Transfer
Single-cell segmentation is typically a crucial task of image-based cellular analysis. We present nucleAIzer, a deep-learning approach aiming toward a truly general method for localizing 2D cell nuclei across a diverse range of assays and light microscopy modalities. We outperform the 739 methods su...
Autores principales: | Hollandi, Reka, Szkalisity, Abel, Toth, Timea, Tasnadi, Ervin, Molnar, Csaba, Mathe, Botond, Grexa, Istvan, Molnar, Jozsef, Balind, Arpad, Gorbe, Mate, Kovacs, Maria, Migh, Ede, Goodman, Allen, Balassa, Tamas, Koos, Krisztian, Wang, Wenyu, Caicedo, Juan Carlos, Bara, Norbert, Kovacs, Ferenc, Paavolainen, Lassi, Danka, Tivadar, Kriston, Andras, Carpenter, Anne Elizabeth, Smith, Kevin, Horvath, Peter |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8247631/ https://www.ncbi.nlm.nih.gov/pubmed/34222682 http://dx.doi.org/10.1016/j.cels.2020.04.003 |
Ejemplares similares
-
Regression plane concept for analysing continuous cellular processes with machine learning
por: Szkalisity, Abel, et al.
Publicado: (2021) -
Correlative Fluorescence and Raman Microscopy to Define Mitotic Stages at the Single-Cell Level: Opportunities and Limitations in the AI Era
por: Voros, Csaba, et al.
Publicado: (2023) -
Intelligent image-based in situ single-cell isolation
por: Brasko, Csilla, et al.
Publicado: (2018) -
Environmental properties of cells improve machine learning-based phenotype recognition accuracy
por: Toth, Timea, et al.
Publicado: (2018) -
Automatic deep learning-driven label-free image-guided patch clamp system
por: Koos, Krisztian, et al.
Publicado: (2021)