Cargando…
Predicting mortality in hemodialysis patients using machine learning analysis
BACKGROUND: Besides the classic logistic regression analysis, non-parametric methods based on machine learning techniques such as random forest are presently used to generate predictive models. The aim of this study was to evaluate random forest mortality prediction models in haemodialysis patients....
Autores principales: | Garcia-Montemayor, Victoria, Martin-Malo, Alejandro, Barbieri, Carlo, Bellocchio, Francesco, Soriano, Sagrario, Pendon-Ruiz de Mier, Victoria, Molina, Ignacio R, Aljama, Pedro, Rodriguez, Mariano |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8247746/ https://www.ncbi.nlm.nih.gov/pubmed/34221370 http://dx.doi.org/10.1093/ckj/sfaa126 |
Ejemplares similares
-
Phosphate control in reducing FGF23 levels in hemodialysis patients
por: Rodelo-Haad, Cristian, et al.
Publicado: (2018) -
Hemodiafiltration with ultrafiltrate regeneration reduces free light chains without albumin loss in multiple myeloma patients
por: Pendón-Ruiz de Mier, M. Victoria, et al.
Publicado: (2020) -
Efficiency of Original versus Generic Intravenous Iron Formulations in Patients on Haemodialysis
por: Agüera, Maria Luisa, et al.
Publicado: (2015) -
FGF23, Biomarker or Target?
por: Rodelo-Haad, Cristian, et al.
Publicado: (2019) -
Klotho/FGF23 and Wnt Signaling as Important Players in the Comorbidities Associated with Chronic Kidney Disease
por: Muñoz-Castañeda, Juan Rafael, et al.
Publicado: (2020)