Cargando…
CD36 – A novel molecular target in the neurovascular unit
CD36 is an integral membrane protein primarily known for its function as a fatty acid transporter, yet also playing other biological roles from lipid metabolism to inflammation modulation. These pleiotropic effects are explained by the existence of multiple different ligands and the extensive distri...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8247892/ https://www.ncbi.nlm.nih.gov/pubmed/33560561 http://dx.doi.org/10.1111/ejn.15147 |
Sumario: | CD36 is an integral membrane protein primarily known for its function as a fatty acid transporter, yet also playing other biological roles from lipid metabolism to inflammation modulation. These pleiotropic effects are explained by the existence of multiple different ligands and the extensive distribution in numerous cell types. Moreover, the receptor is related to various pathologies and it may prove to be a good target for prospective therapeutic strategies. In the neurovascular unit (NVU), CD36 is expressed in cells like microglia, microvascular endothelial cells, astrocytes and neurons. In the normal brain, CD36 was proven to be involved in phagocytosis of apoptotic cells, oro‐sensory detection of dietary lipids, and fatty acid transport across the blood brain barrier (BBB). CD36 was also acknowledged as a potentially important player in central nervous system (CNS) disorders, such as Alzheimer Disease‐associated vascular dysfunction and oxidative stress and the neuroinflammatory response in stroke. Despite continuous efforts, the therapeutic arsenal for such diseases is still scarce and there is an increasing interest in discovering new molecular targets for more specific therapeutic approaches. In this review, we summarize the role of CD36 in the normal function of the NVU and in several CNS disorders, focusing on the dysregulation of the NVU and the potential therapeutic modulation. |
---|