Cargando…
Genetic effects of allergen‐specific IgE levels on exhaled nitric oxide in schoolchildren with asthma: The STOPPA twin study
BACKGROUND: Exhaled nitric oxide and blood eosinophils are clinical asthma T‐helper type 2 markers in use. Immunoglobulin E (IgE) is often involved in the inflammation associated with atopic asthma. The effect of both blood eosinophils and allergen‐specific IgE on exhaled nitric oxide levels is not...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8248142/ https://www.ncbi.nlm.nih.gov/pubmed/33349970 http://dx.doi.org/10.1111/pai.13438 |
_version_ | 1783716665280692224 |
---|---|
author | Hedman, Anna M. Kuja‐Halkola, Ralf Örtqvist, Anne K. van Hage, Marianne Almqvist, Catarina Nordlund, Björn |
author_facet | Hedman, Anna M. Kuja‐Halkola, Ralf Örtqvist, Anne K. van Hage, Marianne Almqvist, Catarina Nordlund, Björn |
author_sort | Hedman, Anna M. |
collection | PubMed |
description | BACKGROUND: Exhaled nitric oxide and blood eosinophils are clinical asthma T‐helper type 2 markers in use. Immunoglobulin E (IgE) is often involved in the inflammation associated with atopic asthma. The effect of both blood eosinophils and allergen‐specific IgE on exhaled nitric oxide levels is not completely understood. Twin‐design studies can improve understanding of the underlying contribution of genetically and/or environmentally driven inflammation markers in asthma. Our aim was to disentangle the covariance between asthma and exhaled nitric oxide into genetic and environmental contributions that can account for inflammation markers in a paediatric population. METHODS: This population‐based, cross‐sectional twin study enrolled 612 monozygotic (MZ) and same‐sex dizygotic (DZ) schoolchildren. Multivariate structural equation modelling was utilized to separate the covariance between asthma and exhaled nitric oxide into genetic and/or environmental effects, taking allergen‐specific IgE level and blood eosinophil count into account while controlling for confounding factors. RESULTS: The cross‐twin/cross‐trait correlations had a higher magnitude in the MZ twins than in the DZ twins, indicating that genes affect the association. The likelihood ratio test for model fitting resulted in the AE model (ie additive genetic effects, A, and non‐shared environmental effects, E) as the most parsimonious. A majority, 73%, of the phenotypic correlation between asthma and exhaled nitric oxide, r = .19 (0.05‐0.33), was attributable to genetic effects which mainly was due to the allergen‐specific IgE level. CONCLUSIONS: This study indicates that the association between asthma and exhaled nitric oxide in children is to a large extent explained by genetics via allergen‐specific IgE level and not blood eosinophils. This might partly explain the clinical heterogeneity in this group. A next step could be to include allergen‐specific IgE level in multivariate omic studies. |
format | Online Article Text |
id | pubmed-8248142 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-82481422021-07-02 Genetic effects of allergen‐specific IgE levels on exhaled nitric oxide in schoolchildren with asthma: The STOPPA twin study Hedman, Anna M. Kuja‐Halkola, Ralf Örtqvist, Anne K. van Hage, Marianne Almqvist, Catarina Nordlund, Björn Pediatr Allergy Immunol ORIGINAL ARTICLES BACKGROUND: Exhaled nitric oxide and blood eosinophils are clinical asthma T‐helper type 2 markers in use. Immunoglobulin E (IgE) is often involved in the inflammation associated with atopic asthma. The effect of both blood eosinophils and allergen‐specific IgE on exhaled nitric oxide levels is not completely understood. Twin‐design studies can improve understanding of the underlying contribution of genetically and/or environmentally driven inflammation markers in asthma. Our aim was to disentangle the covariance between asthma and exhaled nitric oxide into genetic and environmental contributions that can account for inflammation markers in a paediatric population. METHODS: This population‐based, cross‐sectional twin study enrolled 612 monozygotic (MZ) and same‐sex dizygotic (DZ) schoolchildren. Multivariate structural equation modelling was utilized to separate the covariance between asthma and exhaled nitric oxide into genetic and/or environmental effects, taking allergen‐specific IgE level and blood eosinophil count into account while controlling for confounding factors. RESULTS: The cross‐twin/cross‐trait correlations had a higher magnitude in the MZ twins than in the DZ twins, indicating that genes affect the association. The likelihood ratio test for model fitting resulted in the AE model (ie additive genetic effects, A, and non‐shared environmental effects, E) as the most parsimonious. A majority, 73%, of the phenotypic correlation between asthma and exhaled nitric oxide, r = .19 (0.05‐0.33), was attributable to genetic effects which mainly was due to the allergen‐specific IgE level. CONCLUSIONS: This study indicates that the association between asthma and exhaled nitric oxide in children is to a large extent explained by genetics via allergen‐specific IgE level and not blood eosinophils. This might partly explain the clinical heterogeneity in this group. A next step could be to include allergen‐specific IgE level in multivariate omic studies. John Wiley and Sons Inc. 2021-01-11 2021-05 /pmc/articles/PMC8248142/ /pubmed/33349970 http://dx.doi.org/10.1111/pai.13438 Text en © 2021 The Authors. Pediatric Allergy and Immunology published by European Academy of Allergy and Clinical Immunology and John Wiley & Sons Ltd. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
spellingShingle | ORIGINAL ARTICLES Hedman, Anna M. Kuja‐Halkola, Ralf Örtqvist, Anne K. van Hage, Marianne Almqvist, Catarina Nordlund, Björn Genetic effects of allergen‐specific IgE levels on exhaled nitric oxide in schoolchildren with asthma: The STOPPA twin study |
title | Genetic effects of allergen‐specific IgE levels on exhaled nitric oxide in schoolchildren with asthma: The STOPPA twin study |
title_full | Genetic effects of allergen‐specific IgE levels on exhaled nitric oxide in schoolchildren with asthma: The STOPPA twin study |
title_fullStr | Genetic effects of allergen‐specific IgE levels on exhaled nitric oxide in schoolchildren with asthma: The STOPPA twin study |
title_full_unstemmed | Genetic effects of allergen‐specific IgE levels on exhaled nitric oxide in schoolchildren with asthma: The STOPPA twin study |
title_short | Genetic effects of allergen‐specific IgE levels on exhaled nitric oxide in schoolchildren with asthma: The STOPPA twin study |
title_sort | genetic effects of allergen‐specific ige levels on exhaled nitric oxide in schoolchildren with asthma: the stoppa twin study |
topic | ORIGINAL ARTICLES |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8248142/ https://www.ncbi.nlm.nih.gov/pubmed/33349970 http://dx.doi.org/10.1111/pai.13438 |
work_keys_str_mv | AT hedmanannam geneticeffectsofallergenspecificigelevelsonexhalednitricoxideinschoolchildrenwithasthmathestoppatwinstudy AT kujahalkolaralf geneticeffectsofallergenspecificigelevelsonexhalednitricoxideinschoolchildrenwithasthmathestoppatwinstudy AT ortqvistannek geneticeffectsofallergenspecificigelevelsonexhalednitricoxideinschoolchildrenwithasthmathestoppatwinstudy AT vanhagemarianne geneticeffectsofallergenspecificigelevelsonexhalednitricoxideinschoolchildrenwithasthmathestoppatwinstudy AT almqvistcatarina geneticeffectsofallergenspecificigelevelsonexhalednitricoxideinschoolchildrenwithasthmathestoppatwinstudy AT nordlundbjorn geneticeffectsofallergenspecificigelevelsonexhalednitricoxideinschoolchildrenwithasthmathestoppatwinstudy |