Cargando…
New York City taxi trip duration prediction using MLP and XGBoost
New York City taxi rides form the core of the traffic in the city of New York. The many rides taken every day by New Yorkers in the busy city can give us a great idea of traffic times, road blockages, and so on. Predicting the duration of a taxi trip is very important since a user would always like...
Autores principales: | Poongodi, M, Malviya, Mohit, Kumar, Chahat, Hamdi, Mounir, Vijayakumar, V, Nebhen, Jamel, Alyamani, Hasan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer India
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8248292/ http://dx.doi.org/10.1007/s13198-021-01130-x |
Ejemplares similares
-
Networks and long-range mobility in cities: A study of more than one billion taxi trips in New York City
por: Riascos, A. P., et al.
Publicado: (2020) -
Revealing spatiotemporal travel demand and community structure characteristics with taxi trip data: A case study of New York City
por: Xie, Chen, et al.
Publicado: (2021) -
Diagnosis and combating COVID-19 using wearable Oura smart ring with deep learning methods
por: Poongodi, M., et al.
Publicado: (2021) -
Correction to: Diagnosis and combating COVID-19 using wearable Oura smart ring with deep learning methods
por: Poongodi, M., et al.
Publicado: (2021) -
Collective Human Mobility Pattern from Taxi Trips in Urban Area
por: Peng, Chengbin, et al.
Publicado: (2012)