Cargando…
Potential of deep learning segmentation for the extraction of archaeological features from historical map series
Historical maps present a unique depiction of past landscapes, providing evidence for a wide range of information such as settlement distribution, past land use, natural resources, transport networks, toponymy and other natural and cultural data within an explicitly spatial context. Maps produced be...
Autores principales: | Garcia‐Molsosa, Arnau, Orengo, Hector A., Lawrence, Dan, Philip, Graham, Hopper, Kristen, Petrie, Cameron A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8248396/ https://www.ncbi.nlm.nih.gov/pubmed/34239283 http://dx.doi.org/10.1002/arp.1807 |
Ejemplares similares
-
Automated detection of archaeological mounds using machine-learning classification of multisensor and multitemporal satellite data
por: Orengo, Hector A., et al.
Publicado: (2020) -
Curriculum learning-based strategy for low-density archaeological mound detection from historical maps in India and Pakistan
por: Berganzo-Besga, Iban, et al.
Publicado: (2023) -
Text Mining Oral Histories in Historical Archaeology
por: Brown, Madeline, et al.
Publicado: (2023) -
Multi‐scale relief model (MSRM): a new algorithm for the visualization of subtle topographic change of variable size in digital elevation models
por: Orengo, Hector A., et al.
Publicado: (2018) -
Osteo-archaeology as a medico-historical auxiliary science.
por: Moller-Christensen, V
Publicado: (1973)