Cargando…
Selecting the model for multiple imputation of missing data: Just use an IC!
Multiple imputation and maximum likelihood estimation (via the expectation‐maximization algorithm) are two well‐known methods readily used for analyzing data with missing values. While these two methods are often considered as being distinct from one another, multiple imputation (when using improper...
Autores principales: | Noghrehchi, Firouzeh, Stoklosa, Jakub, Penev, Spiridon, Warton, David I. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8248419/ https://www.ncbi.nlm.nih.gov/pubmed/33629367 http://dx.doi.org/10.1002/sim.8915 |
Ejemplares similares
-
Multiple imputation of missing data using SAS
por: Berglund, Patricia A, et al.
Publicado: (2014) -
Multiple Imputation of Missing Composite Outcomes in Longitudinal Data
por: O’Keeffe, Aidan G., et al.
Publicado: (2016) -
Missing data and multiple imputation in clinical epidemiological research
por: Pedersen, Alma B, et al.
Publicado: (2017) -
Multiple imputation of missing data under missing at random: including a collider as an auxiliary variable in the imputation model can induce bias
por: Curnow, Elinor, et al.
Publicado: (2023) -
Flexible imputation of missing data
por: van Buuren, Stef
Publicado: (2018)