Cargando…
DeepFRAP: Fast fluorescence recovery after photobleaching data analysis using deep neural networks
Conventional analysis of fluorescence recovery after photobleaching (FRAP) data for diffusion coefficient estimation typically involves fitting an analytical or numerical FRAP model to the recovery curve data using non‐linear least squares. Depending on the model, this can be time consuming, especia...
Autores principales: | Wåhlstrand Skärström, Victor, Krona, Annika, Lorén, Niklas, Röding, Magnus |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8248438/ https://www.ncbi.nlm.nih.gov/pubmed/33247838 http://dx.doi.org/10.1111/jmi.12989 |
Ejemplares similares
-
Inverse design of anisotropic spinodoid materials with prescribed diffusivity
por: Röding, Magnus, et al.
Publicado: (2022) -
A Highly Accurate Pixel-Based FRAP Model Based on Spectral-Domain Numerical Methods
por: Röding, Magnus, et al.
Publicado: (2019) -
The Utility of Fluorescence Recovery after Photobleaching (FRAP) to Study the Plasma Membrane
por: Day, Charles A., et al.
Publicado: (2023) -
Recent Applications of Fluorescence Recovery after Photobleaching (FRAP) to Membrane Bio-Macromolecules
por: Rayan, Gamal, et al.
Publicado: (2010) -
Fluorescence Recovery After Photobleaching (FRAP) of Fluorescence Tagged Proteins in Dendritic Spines of Cultured Hippocampal Neurons
por: Zheng, Chan-Ying, et al.
Publicado: (2011)