Cargando…
Wheat Spike Blast Image Classification Using Deep Convolutional Neural Networks
Wheat blast is a threat to global wheat production, and limited blast-resistant cultivars are available. The current estimations of wheat spike blast severity rely on human assessments, but this technique could have limitations. Reliable visual disease estimations paired with Red Green Blue (RGB) im...
Autores principales: | Fernández-Campos, Mariela, Huang, Yu-Ting, Jahanshahi, Mohammad R., Wang, Tao, Jin, Jian, Telenko, Darcy E. P., Góngora-Canul, Carlos, Cruz, C. D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8248543/ https://www.ncbi.nlm.nih.gov/pubmed/34220894 http://dx.doi.org/10.3389/fpls.2021.673505 |
Ejemplares similares
-
Contour-Based Detection and Quantification of Tar Spot Stromata Using Red-Green-Blue (RGB) Imagery
por: Lee, Da-Young, et al.
Publicado: (2021) -
DeepCount: In-Field Automatic Quantification of Wheat Spikes Using Simple Linear Iterative Clustering and Deep Convolutional Neural Networks
por: Sadeghi-Tehran, Pouria, et al.
Publicado: (2019) -
Monitoring tar spot disease in corn at different canopy and temporal levels using aerial multispectral imaging and machine learning
por: Zhang, Chongyuan, et al.
Publicado: (2023) -
Detection and analysis of wheat spikes using Convolutional Neural Networks
por: Hasan, Md Mehedi, et al.
Publicado: (2018) -
Correction to: Detection and analysis of wheat spikes using Convolutional Neural Networks
por: Hasan, Md Mehedi, et al.
Publicado: (2019)