Cargando…

MiR-466 Inhibits the Progression of Severe Hepatocellular Carcinoma via Regulating FMNL2-Mediated Activation of NF-κB and Wnt/β-Catenin Pathways

Hepatocellular carcinoma (HCC) has threatened the health of humans, and some evidence has indicated that miR-466 involves the progressions of some cancers. This study focused on the role of miR-466 in the formation and development of HCC. The expression levels of miR-466 in the tissues of patients a...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Jianwei, Yan, Su
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8249156/
https://www.ncbi.nlm.nih.gov/pubmed/34257650
http://dx.doi.org/10.1155/2021/3554219
_version_ 1783716853034516480
author Li, Jianwei
Yan, Su
author_facet Li, Jianwei
Yan, Su
author_sort Li, Jianwei
collection PubMed
description Hepatocellular carcinoma (HCC) has threatened the health of humans, and some evidence has indicated that miR-466 involves the progressions of some cancers. This study focused on the role of miR-466 in the formation and development of HCC. The expression levels of miR-466 in the tissues of patients and HCC cell lines were measured by qRT-PCR, and CCK-8, transwell assay, and flow cytometry assay were used to observe the functions of miR-466 on the HCC cells. Moreover, the miRNA databases, dual-luciferase reporter assay, and Western blot were used for the investigation of the regulation mechanism of miR-466 on HCC cells. The results showed that miR-466 was significantly downregulated in HCC tissues and cell lines, and inhibited proliferation, invasion, and high apoptosis were found in HCC cells when miR-466 was overexpressed. The results confirmed that FMNL2 was a target of miR-466, and increased FMNL2 could reverse the effects of miR-466 on the phenotype of HCC cells. Besides, it was also found that miR-466 was involved in the regulation of NF-κB and Wnt/β-catenin pathways in HCC cells via targeting FMNL2. In conclusion, the results of this study suggest that miR-466 regulates the activities of NF-κB and Wnt/β-catenin pathways to inhibit the progression of HCC cells via targeting FMNL2.
format Online
Article
Text
id pubmed-8249156
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Hindawi
record_format MEDLINE/PubMed
spelling pubmed-82491562021-07-12 MiR-466 Inhibits the Progression of Severe Hepatocellular Carcinoma via Regulating FMNL2-Mediated Activation of NF-κB and Wnt/β-Catenin Pathways Li, Jianwei Yan, Su J Oncol Research Article Hepatocellular carcinoma (HCC) has threatened the health of humans, and some evidence has indicated that miR-466 involves the progressions of some cancers. This study focused on the role of miR-466 in the formation and development of HCC. The expression levels of miR-466 in the tissues of patients and HCC cell lines were measured by qRT-PCR, and CCK-8, transwell assay, and flow cytometry assay were used to observe the functions of miR-466 on the HCC cells. Moreover, the miRNA databases, dual-luciferase reporter assay, and Western blot were used for the investigation of the regulation mechanism of miR-466 on HCC cells. The results showed that miR-466 was significantly downregulated in HCC tissues and cell lines, and inhibited proliferation, invasion, and high apoptosis were found in HCC cells when miR-466 was overexpressed. The results confirmed that FMNL2 was a target of miR-466, and increased FMNL2 could reverse the effects of miR-466 on the phenotype of HCC cells. Besides, it was also found that miR-466 was involved in the regulation of NF-κB and Wnt/β-catenin pathways in HCC cells via targeting FMNL2. In conclusion, the results of this study suggest that miR-466 regulates the activities of NF-κB and Wnt/β-catenin pathways to inhibit the progression of HCC cells via targeting FMNL2. Hindawi 2021-06-23 /pmc/articles/PMC8249156/ /pubmed/34257650 http://dx.doi.org/10.1155/2021/3554219 Text en Copyright © 2021 Jianwei Li and Su Yan. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Li, Jianwei
Yan, Su
MiR-466 Inhibits the Progression of Severe Hepatocellular Carcinoma via Regulating FMNL2-Mediated Activation of NF-κB and Wnt/β-Catenin Pathways
title MiR-466 Inhibits the Progression of Severe Hepatocellular Carcinoma via Regulating FMNL2-Mediated Activation of NF-κB and Wnt/β-Catenin Pathways
title_full MiR-466 Inhibits the Progression of Severe Hepatocellular Carcinoma via Regulating FMNL2-Mediated Activation of NF-κB and Wnt/β-Catenin Pathways
title_fullStr MiR-466 Inhibits the Progression of Severe Hepatocellular Carcinoma via Regulating FMNL2-Mediated Activation of NF-κB and Wnt/β-Catenin Pathways
title_full_unstemmed MiR-466 Inhibits the Progression of Severe Hepatocellular Carcinoma via Regulating FMNL2-Mediated Activation of NF-κB and Wnt/β-Catenin Pathways
title_short MiR-466 Inhibits the Progression of Severe Hepatocellular Carcinoma via Regulating FMNL2-Mediated Activation of NF-κB and Wnt/β-Catenin Pathways
title_sort mir-466 inhibits the progression of severe hepatocellular carcinoma via regulating fmnl2-mediated activation of nf-κb and wnt/β-catenin pathways
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8249156/
https://www.ncbi.nlm.nih.gov/pubmed/34257650
http://dx.doi.org/10.1155/2021/3554219
work_keys_str_mv AT lijianwei mir466inhibitstheprogressionofseverehepatocellularcarcinomaviaregulatingfmnl2mediatedactivationofnfkbandwntbcateninpathways
AT yansu mir466inhibitstheprogressionofseverehepatocellularcarcinomaviaregulatingfmnl2mediatedactivationofnfkbandwntbcateninpathways