Cargando…
A deep learning method for automatic segmentation of the bony orbit in MRI and CT images
This paper proposes a fully automatic method to segment the inner boundary of the bony orbit in two different image modalities: magnetic resonance imaging (MRI) and computed tomography (CT). The method, based on a deep learning architecture, uses two fully convolutional neural networks in series fol...
Autores principales: | Hamwood, Jared, Schmutz, Beat, Collins, Michael J., Allenby, Mark C., Alonso-Caneiro, David |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8249400/ https://www.ncbi.nlm.nih.gov/pubmed/34211081 http://dx.doi.org/10.1038/s41598-021-93227-3 |
Ejemplares similares
-
Automatic choroidal segmentation in OCT images using supervised deep learning methods
por: Kugelman, Jason, et al.
Publicado: (2019) -
Automatic Detection of Cone Photoreceptors With Fully Convolutional Networks
por: Hamwood, Jared, et al.
Publicado: (2019) -
The association between conjunctival and scleral thickness and ocular surface ultraviolet autofluorescence
por: Rajasingam, Pryntha, et al.
Publicado: (2023) -
Deep Learning-Based CT Radiomics for Feature Representation and Analysis of Aging Characteristics of Asian Bony Orbit
por: Li, Zhu, et al.
Publicado: (2022) -
Automatic measurement of exophthalmos based orbital CT images using deep learning
por: Zhang, Yinghuai, et al.
Publicado: (2023)