Cargando…

Direct control of store-operated calcium channels by ultrafast laser

Ca(2+) channels are essential to cell birth, life, and death. They can be externally activated by optogenetic tools, but this requires robust introduction of exogenous optogenetic genes for expression of photosensitive proteins in biological systems. Here we present femtoSOC, a method for direct con...

Descripción completa

Detalles Bibliográficos
Autores principales: Cheng, Pan, Tian, Xiaoying, Tang, Wanyi, Cheng, Juan, Bao, Jin, Wang, Haipeng, Zheng, Sisi, Wang, Youjun, Wei, Xunbin, Chen, Tunan, Feng, Hua, Xue, Tian, Goda, Keisuke, He, Hao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Singapore 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8249419/
https://www.ncbi.nlm.nih.gov/pubmed/33469157
http://dx.doi.org/10.1038/s41422-020-00463-9
Descripción
Sumario:Ca(2+) channels are essential to cell birth, life, and death. They can be externally activated by optogenetic tools, but this requires robust introduction of exogenous optogenetic genes for expression of photosensitive proteins in biological systems. Here we present femtoSOC, a method for direct control of Ca(2+) channels solely by ultrafast laser without the need for optogenetic tools or any other exogenous reagents. Specifically, by focusing and scanning wavelength-tuned low-power femtosecond laser pulses on the plasma membrane for multiphoton excitation, we directly induced Ca(2+) influx in cultured cells. Mechanistic study reveals that photoexcited flavins covalently bind cysteine residues in Orai1 via thioether bonds, which facilitates Orai1 polymerization to form store-operated calcium channels (SOCs) independently of STIM1, a protein generally participating in SOC formation, enabling all-optical activation of Ca(2+) influx and downstream signaling pathways. Moreover, we used femtoSOC to demonstrate direct neural activation both in brain slices in vitro and in intact brains of living mice in vivo in a spatiotemporal-specific manner, indicating potential utility of femtoSOC.