Cargando…
Machine learning compensates fold-change method and highlights oxidative phosphorylation in the brain transcriptome of Alzheimer’s disease
Alzheimer’s disease (AD) is a neurodegenerative disorder causing 70% of dementia cases. However, the mechanism of disease development is still elusive. Despite the availability of a wide range of biological data, a comprehensive understanding of AD's mechanism from machine learning (ML) is so f...
Autores principales: | Cheng, Jack, Liu, Hsin-Ping, Lin, Wei-Yong, Tsai, Fuu-Jen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8249453/ https://www.ncbi.nlm.nih.gov/pubmed/34211065 http://dx.doi.org/10.1038/s41598-021-93085-z |
Ejemplares similares
-
Identification of contributing genes of Huntington’s disease by machine learning
por: Cheng, Jack, et al.
Publicado: (2020) -
An Increase in Phosphorylation and Truncation of Crystallin With the Progression of Cataracts()
por: Lin, Hui-Ju, et al.
Publicado: (2013) -
Entropy-Enthalpy Compensations Fold Proteins in Precise Ways
por: Li, Jiacheng, et al.
Publicado: (2021) -
Adaptation of Oxidative Phosphorylation Machinery Compensates for Hepatic Lipotoxicity in Early Stages of MAFLD
por: Fahlbusch, Pia, et al.
Publicado: (2022) -
Transcriptomic and Network Analysis Highlight the Association of Diabetes at Different Stages of Alzheimer’s Disease
por: Santiago, Jose A., et al.
Publicado: (2019)