Cargando…

Development and validation of resource-driven risk prediction models for incident chronic kidney disease in type 2 diabetes

Prediction models for population-based screening need, for global usage, to be resource-driven, involving predictors that are affordably resourced. Here, we report the development and validation of three resource-driven risk models to identify people with type 2 diabetes (T2DM) at risk of stage 3 CK...

Descripción completa

Detalles Bibliográficos
Autores principales: Gurudas, Sarega, Nugawela, Manjula, Prevost, A. Toby, Sathish, Thirunavukkarasu, Mathur, Rohini, Rafferty, J. M., Blighe, Kevin, Rajalakshmi, Ramachandran, Mohan, Anjana R., Saravanan, Jebarani, Majeed, Azeem, Mohan, Viswanthan, Owens, David R., Robson, John, Sivaprasad, Sobha
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8249456/
https://www.ncbi.nlm.nih.gov/pubmed/34211028
http://dx.doi.org/10.1038/s41598-021-93096-w
Descripción
Sumario:Prediction models for population-based screening need, for global usage, to be resource-driven, involving predictors that are affordably resourced. Here, we report the development and validation of three resource-driven risk models to identify people with type 2 diabetes (T2DM) at risk of stage 3 CKD defined by a decline in estimated glomerular filtration rate (eGFR) to below 60 mL/min/1.73m(2). The observational study cohort used for model development consisted of data from a primary care dataset of 20,510 multi-ethnic individuals with T2DM from London, UK (2007–2018). Discrimination and calibration of the resulting prediction models developed using cox regression were assessed using the c-statistic and calibration slope, respectively. Models were internally validated using tenfold cross-validation and externally validated on 13,346 primary care individuals from Wales, UK. The simplest model was simplified into a risk score to enable implementation in community-based medicine. The derived full model included demographic, laboratory parameters, medication-use, cardiovascular disease history (CVD) and sight threatening retinopathy status (STDR). Two less resource-intense models were developed by excluding CVD and STDR in the second model and HbA1c and HDL in the third model. All three 5-year risk models had good internal discrimination and calibration (optimism adjusted C-statistics were each 0.85 and calibration slopes 0.999–1.002). In Wales, models achieved excellent discrimination(c-statistics ranged 0.82–0.83). Calibration slopes at 5-years suggested models over-predicted risks, however were successfully updated to accommodate reduced incidence of stage 3 CKD in Wales, which improved their alignment with the observed rates in Wales (E/O ratios near to 1). The risk score demonstrated similar model performance compared to direct evaluation of the cox model. These resource-driven risk prediction models may enable universal screening for Stage 3 CKD to enable targeted early optimisation of risk factors for CKD.