Cargando…
Trajectories of mortality risk among patients with cancer and associated end-of-life utilization
Machine learning algorithms may address prognostic inaccuracy among clinicians by identifying patients at risk of short-term mortality and facilitating earlier discussions about hospice enrollment, discontinuation of therapy, or other management decisions. In the present study, we used prospective p...
Autores principales: | Parikh, Ravi B., Liu, Manqing, Li, Eric, Li, Runze, Chen, Jinbo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8249647/ https://www.ncbi.nlm.nih.gov/pubmed/34211108 http://dx.doi.org/10.1038/s41746-021-00477-6 |
Ejemplares similares
-
Trends in Checkpoint Inhibitor Therapy for Advanced Urothelial Cell Carcinoma at the End of Life: Insights from Real‐World Practice
por: Parikh, Ravi B., et al.
Publicado: (2019) -
Impact of Label Restriction on Checkpoint-Inhibitor Use in Bladder Cancer and Changes in Mortality
por: Vader, Daniel T, et al.
Publicado: (2022) -
Dignity and Dignity Therapy in End-of-Life Care
por: Lim, Yoojin
Publicado: (2023) -
Aniridia associated with congenital aphakia and secondary glaucoma
por: Moreker, Mayur, et al.
Publicado: (2009) -
Time of Clinic Appointment and Serious Illness Communication in Oncology
por: Kolla, Likhitha, et al.
Publicado: (2023)