Cargando…
Metagenomic and metatranscriptomic profiling of Lactobacillus casei Zhang in the human gut
Little is known about the replication and dynamic transcription of probiotics during their “passenger” journey in the human GI tract, which has therefore limited the understanding of their probiotic mechanisms. Here, metagenomic and metatranscriptomic sequencing was used to expose the in vivo expres...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8249650/ https://www.ncbi.nlm.nih.gov/pubmed/34210980 http://dx.doi.org/10.1038/s41522-021-00227-2 |
_version_ | 1783716940263456768 |
---|---|
author | Wang, Jicheng Zhang, Jiachao Liu, Wenjun Zhang, Heping Sun, Zhihong |
author_facet | Wang, Jicheng Zhang, Jiachao Liu, Wenjun Zhang, Heping Sun, Zhihong |
author_sort | Wang, Jicheng |
collection | PubMed |
description | Little is known about the replication and dynamic transcription of probiotics during their “passenger” journey in the human GI tract, which has therefore limited the understanding of their probiotic mechanisms. Here, metagenomic and metatranscriptomic sequencing was used to expose the in vivo expression patterns of the probiotic Lactobacillus casei Zhang (LcZ), which was compared with its in vitro growth transcriptomes, as well as the dynamics of the indigenous microbiome response to probiotic consumption. Extraction of the strain-specific reads revealed that replication and transcripts from the ingested LcZ were increased, while those from the resident L. casei strains remained unchanged. Mapping of all sequencing reads to LcZ genome showed that gene expression in vitro and in vivo differed dramatically. Approximately 39% of mRNAs and 45% of sRNAs of LcZ well-expressed were repressed after ingestion into human gut. The expression of ABC transporter genes and amino acid metabolism genes was induced at day 14 of ingestion, and genes for sugar and SCFA metabolism were activated at day 28 of ingestion. Expression of rli28c sRNA with peaked expression during the in vitro stationary phase was also activated in the human gut; this sRNA repressed LcZ growth and lactic acid production in vitro. However, the response of the human gut microbiome to LcZ was limited and heterogeneous. These findings implicate the ingested probiotic has to change its transcription patterns to survive and adapt in the human gut, and the time-dependent activation patterns indicate highly dynamic cross-talk between the probiotic and human gut microbes. |
format | Online Article Text |
id | pubmed-8249650 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-82496502021-07-20 Metagenomic and metatranscriptomic profiling of Lactobacillus casei Zhang in the human gut Wang, Jicheng Zhang, Jiachao Liu, Wenjun Zhang, Heping Sun, Zhihong NPJ Biofilms Microbiomes Article Little is known about the replication and dynamic transcription of probiotics during their “passenger” journey in the human GI tract, which has therefore limited the understanding of their probiotic mechanisms. Here, metagenomic and metatranscriptomic sequencing was used to expose the in vivo expression patterns of the probiotic Lactobacillus casei Zhang (LcZ), which was compared with its in vitro growth transcriptomes, as well as the dynamics of the indigenous microbiome response to probiotic consumption. Extraction of the strain-specific reads revealed that replication and transcripts from the ingested LcZ were increased, while those from the resident L. casei strains remained unchanged. Mapping of all sequencing reads to LcZ genome showed that gene expression in vitro and in vivo differed dramatically. Approximately 39% of mRNAs and 45% of sRNAs of LcZ well-expressed were repressed after ingestion into human gut. The expression of ABC transporter genes and amino acid metabolism genes was induced at day 14 of ingestion, and genes for sugar and SCFA metabolism were activated at day 28 of ingestion. Expression of rli28c sRNA with peaked expression during the in vitro stationary phase was also activated in the human gut; this sRNA repressed LcZ growth and lactic acid production in vitro. However, the response of the human gut microbiome to LcZ was limited and heterogeneous. These findings implicate the ingested probiotic has to change its transcription patterns to survive and adapt in the human gut, and the time-dependent activation patterns indicate highly dynamic cross-talk between the probiotic and human gut microbes. Nature Publishing Group UK 2021-07-01 /pmc/articles/PMC8249650/ /pubmed/34210980 http://dx.doi.org/10.1038/s41522-021-00227-2 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Wang, Jicheng Zhang, Jiachao Liu, Wenjun Zhang, Heping Sun, Zhihong Metagenomic and metatranscriptomic profiling of Lactobacillus casei Zhang in the human gut |
title | Metagenomic and metatranscriptomic profiling of Lactobacillus casei Zhang in the human gut |
title_full | Metagenomic and metatranscriptomic profiling of Lactobacillus casei Zhang in the human gut |
title_fullStr | Metagenomic and metatranscriptomic profiling of Lactobacillus casei Zhang in the human gut |
title_full_unstemmed | Metagenomic and metatranscriptomic profiling of Lactobacillus casei Zhang in the human gut |
title_short | Metagenomic and metatranscriptomic profiling of Lactobacillus casei Zhang in the human gut |
title_sort | metagenomic and metatranscriptomic profiling of lactobacillus casei zhang in the human gut |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8249650/ https://www.ncbi.nlm.nih.gov/pubmed/34210980 http://dx.doi.org/10.1038/s41522-021-00227-2 |
work_keys_str_mv | AT wangjicheng metagenomicandmetatranscriptomicprofilingoflactobacilluscaseizhanginthehumangut AT zhangjiachao metagenomicandmetatranscriptomicprofilingoflactobacilluscaseizhanginthehumangut AT liuwenjun metagenomicandmetatranscriptomicprofilingoflactobacilluscaseizhanginthehumangut AT zhangheping metagenomicandmetatranscriptomicprofilingoflactobacilluscaseizhanginthehumangut AT sunzhihong metagenomicandmetatranscriptomicprofilingoflactobacilluscaseizhanginthehumangut |