Cargando…
Bayesian estimation of maximum entropy model for individualized energy landscape analysis of brain state dynamics
The pairwise maximum entropy model (MEM) for resting state functional MRI (rsfMRI) has been used to generate energy landscape of brain states and to explore nonlinear brain state dynamics. Researches using MEM, however, has mostly been restricted to fixed‐effect group‐level analyses, using concatena...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8249903/ https://www.ncbi.nlm.nih.gov/pubmed/33934421 http://dx.doi.org/10.1002/hbm.25442 |
_version_ | 1783716998911361024 |
---|---|
author | Kang, Jiyoung Jeong, Seok‐Oh Pae, Chongwon Park, Hae‐Jeong |
author_facet | Kang, Jiyoung Jeong, Seok‐Oh Pae, Chongwon Park, Hae‐Jeong |
author_sort | Kang, Jiyoung |
collection | PubMed |
description | The pairwise maximum entropy model (MEM) for resting state functional MRI (rsfMRI) has been used to generate energy landscape of brain states and to explore nonlinear brain state dynamics. Researches using MEM, however, has mostly been restricted to fixed‐effect group‐level analyses, using concatenated time series across individuals, due to the need for large samples in the parameter estimation of MEM. To mitigate the small sample problem in analyzing energy landscapes for individuals, we propose a Bayesian estimation of individual MEM using variational Bayes approximation (BMEM). We evaluated the performances of BMEM with respect to sample sizes and prior information using simulation. BMEM showed advantages over conventional maximum likelihood estimation in reliably estimating model parameters for individuals with small sample data, particularly utilizing the empirical priors derived from group data. We then analyzed individual rsfMRI of the Human Connectome Project to show the usefulness of MEM in differentiating individuals and in exploring neural correlates for human behavior. MEM and its energy landscape properties showed high subject specificity comparable to that of functional connectivity. Canonical correlation analysis identified canonical variables for MEM highly associated with cognitive scores. Inter‐individual variations of cognitive scores were also reflected in energy landscape properties such as energies, occupation times, and basin sizes at local minima. We conclude that BMEM provides an efficient method to characterize dynamic properties of individuals using energy landscape analysis of individual brain states. |
format | Online Article Text |
id | pubmed-8249903 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | John Wiley & Sons, Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-82499032021-07-09 Bayesian estimation of maximum entropy model for individualized energy landscape analysis of brain state dynamics Kang, Jiyoung Jeong, Seok‐Oh Pae, Chongwon Park, Hae‐Jeong Hum Brain Mapp Research Articles The pairwise maximum entropy model (MEM) for resting state functional MRI (rsfMRI) has been used to generate energy landscape of brain states and to explore nonlinear brain state dynamics. Researches using MEM, however, has mostly been restricted to fixed‐effect group‐level analyses, using concatenated time series across individuals, due to the need for large samples in the parameter estimation of MEM. To mitigate the small sample problem in analyzing energy landscapes for individuals, we propose a Bayesian estimation of individual MEM using variational Bayes approximation (BMEM). We evaluated the performances of BMEM with respect to sample sizes and prior information using simulation. BMEM showed advantages over conventional maximum likelihood estimation in reliably estimating model parameters for individuals with small sample data, particularly utilizing the empirical priors derived from group data. We then analyzed individual rsfMRI of the Human Connectome Project to show the usefulness of MEM in differentiating individuals and in exploring neural correlates for human behavior. MEM and its energy landscape properties showed high subject specificity comparable to that of functional connectivity. Canonical correlation analysis identified canonical variables for MEM highly associated with cognitive scores. Inter‐individual variations of cognitive scores were also reflected in energy landscape properties such as energies, occupation times, and basin sizes at local minima. We conclude that BMEM provides an efficient method to characterize dynamic properties of individuals using energy landscape analysis of individual brain states. John Wiley & Sons, Inc. 2021-05-02 /pmc/articles/PMC8249903/ /pubmed/33934421 http://dx.doi.org/10.1002/hbm.25442 Text en © 2021 The Authors. Human Brain Mapping published by Wiley Periodicals LLC. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
spellingShingle | Research Articles Kang, Jiyoung Jeong, Seok‐Oh Pae, Chongwon Park, Hae‐Jeong Bayesian estimation of maximum entropy model for individualized energy landscape analysis of brain state dynamics |
title | Bayesian estimation of maximum entropy model for individualized energy landscape analysis of brain state dynamics |
title_full | Bayesian estimation of maximum entropy model for individualized energy landscape analysis of brain state dynamics |
title_fullStr | Bayesian estimation of maximum entropy model for individualized energy landscape analysis of brain state dynamics |
title_full_unstemmed | Bayesian estimation of maximum entropy model for individualized energy landscape analysis of brain state dynamics |
title_short | Bayesian estimation of maximum entropy model for individualized energy landscape analysis of brain state dynamics |
title_sort | bayesian estimation of maximum entropy model for individualized energy landscape analysis of brain state dynamics |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8249903/ https://www.ncbi.nlm.nih.gov/pubmed/33934421 http://dx.doi.org/10.1002/hbm.25442 |
work_keys_str_mv | AT kangjiyoung bayesianestimationofmaximumentropymodelforindividualizedenergylandscapeanalysisofbrainstatedynamics AT jeongseokoh bayesianestimationofmaximumentropymodelforindividualizedenergylandscapeanalysisofbrainstatedynamics AT paechongwon bayesianestimationofmaximumentropymodelforindividualizedenergylandscapeanalysisofbrainstatedynamics AT parkhaejeong bayesianestimationofmaximumentropymodelforindividualizedenergylandscapeanalysisofbrainstatedynamics |