Cargando…

Exocrine pancreas proteases regulate β-cell proliferation in zebrafish ciliopathy models and in murine systems

Pancreatic β-cells are a critical cell type in the pathology of diabetes. Models of genetic syndromes featuring diabetes can provide novel mechanistic insights into regulation of β-cells in the context of disease. We previously examined β-cell mass in models of two ciliopathies, Alström Syndrome (AS...

Descripción completa

Detalles Bibliográficos
Autores principales: Hostelley, Timothy L., Nesmith, Jessica E., Larkin, Emily, Jones, Amanda, Boyes, Daniel, Leitch, Carmen C., Fontaine, Magali, Zaghloul, Norann A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Company of Biologists Ltd 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8249909/
https://www.ncbi.nlm.nih.gov/pubmed/34125181
http://dx.doi.org/10.1242/bio.046839
Descripción
Sumario:Pancreatic β-cells are a critical cell type in the pathology of diabetes. Models of genetic syndromes featuring diabetes can provide novel mechanistic insights into regulation of β-cells in the context of disease. We previously examined β-cell mass in models of two ciliopathies, Alström Syndrome (AS) and Bardet-Biedl Syndrome (BBS), which are similar in the presence of metabolic phenotypes, including obesity, but exhibit strikingly different rates of diabetes. Zebrafish models of these disorders show deficient β-cells with diabetes in AS models and an increased β-cells absent diabetes in BBS models, indicating β-cell generation or maintenance that correlates with disease prevalence. Using transcriptome analyses, differential expression of several exocrine pancreas proteases with directionality that was consistent with β-cell numbers were identified. Based on these lines of evidence, we hypothesized that pancreatic proteases directly impact β-cells. In the present study, we examined this possibility and found that pancreatic protease genes contribute to proper maintenance of normal β-cell numbers, proliferation in larval zebrafish, and regulation of AS and BBS β-cell phenotypes. Our data suggest that these proteins can be taken up directly by cultured β-cells and ex vivo murine islets, inducing proliferation in both. Endogenous uptake of pancreatic proteases by β-cells was confirmed in vivo using transgenic zebrafish and in intact murine pancreata. Taken together, these findings support a novel proliferative signaling role for exocrine pancreas proteases through interaction with endocrine β-cells.