Cargando…
Rabbit PrP Is Partially Resistant to in vitro Aggregation Induced by Different Biological Cofactors
Prion diseases have been described in humans and other mammals, including sheep, goats, cattle, and deer. Since mice, hamsters, and cats are susceptible to prion infection, they are often used to study the mechanisms of prion infection and conversion. Mammals, such as horses and dogs, however, do no...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8249948/ https://www.ncbi.nlm.nih.gov/pubmed/34220442 http://dx.doi.org/10.3389/fnins.2021.689315 |
_version_ | 1783717008671506432 |
---|---|
author | Angelli, Juliana N. Passos, Yulli M. Brito, Julyana M. A. Silva, Jerson L. Cordeiro, Yraima Vieira, Tuane C. R. G. |
author_facet | Angelli, Juliana N. Passos, Yulli M. Brito, Julyana M. A. Silva, Jerson L. Cordeiro, Yraima Vieira, Tuane C. R. G. |
author_sort | Angelli, Juliana N. |
collection | PubMed |
description | Prion diseases have been described in humans and other mammals, including sheep, goats, cattle, and deer. Since mice, hamsters, and cats are susceptible to prion infection, they are often used to study the mechanisms of prion infection and conversion. Mammals, such as horses and dogs, however, do not naturally contract the disease and are resistant to infection, while others, like rabbits, have exhibited low susceptibility. Infection involves the conversion of the cellular prion protein (PrP(C)) to the scrapie form (PrP(Sc)), and several cofactors have already been identified as important adjuvants in this process, such as glycosaminoglycans (GAGs), lipids, and nucleic acids. The molecular mechanisms that determine transmissibility between species remain unclear, as well as the barriers to transmission. In this study, we examine the interaction of recombinant rabbit PrP(C) (RaPrP) with different biological cofactors such as GAGs (heparin and dermatan sulfate), phosphatidic acid, and DNA oligonucleotides (A1 and D67) to evaluate the importance of these cofactors in modulating the aggregation of rabbit PrP and explain the animal’s different degrees of resistance to infection. We used spectroscopic and chromatographic approaches to evaluate the interaction with cofactors and their effect on RaPrP aggregation, which we compared with murine PrP (MuPrP). Our data show that all cofactors induce RaPrP aggregation and exhibit pH dependence. However, RaPrP aggregated to a lesser extent than MuPrP in the presence of any of the cofactors tested. The binding affinity with cofactors does not correlate with these low levels of aggregation, suggesting that the latter are related to the stability of PrP at acidic pH. The absence of the N-terminus affected the interaction with cofactors, influencing the efficiency of aggregation. These findings demonstrate that the interaction with polyanionic cofactors is related to rabbit PrP being less susceptible to aggregation in vitro and that the N-terminal domain is important to the efficiency of conversion, increasing the interaction with cofactors. The decreased effect of cofactors in rabbit PrP likely explains its lower propensity to prion conversion. |
format | Online Article Text |
id | pubmed-8249948 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-82499482021-07-03 Rabbit PrP Is Partially Resistant to in vitro Aggregation Induced by Different Biological Cofactors Angelli, Juliana N. Passos, Yulli M. Brito, Julyana M. A. Silva, Jerson L. Cordeiro, Yraima Vieira, Tuane C. R. G. Front Neurosci Neuroscience Prion diseases have been described in humans and other mammals, including sheep, goats, cattle, and deer. Since mice, hamsters, and cats are susceptible to prion infection, they are often used to study the mechanisms of prion infection and conversion. Mammals, such as horses and dogs, however, do not naturally contract the disease and are resistant to infection, while others, like rabbits, have exhibited low susceptibility. Infection involves the conversion of the cellular prion protein (PrP(C)) to the scrapie form (PrP(Sc)), and several cofactors have already been identified as important adjuvants in this process, such as glycosaminoglycans (GAGs), lipids, and nucleic acids. The molecular mechanisms that determine transmissibility between species remain unclear, as well as the barriers to transmission. In this study, we examine the interaction of recombinant rabbit PrP(C) (RaPrP) with different biological cofactors such as GAGs (heparin and dermatan sulfate), phosphatidic acid, and DNA oligonucleotides (A1 and D67) to evaluate the importance of these cofactors in modulating the aggregation of rabbit PrP and explain the animal’s different degrees of resistance to infection. We used spectroscopic and chromatographic approaches to evaluate the interaction with cofactors and their effect on RaPrP aggregation, which we compared with murine PrP (MuPrP). Our data show that all cofactors induce RaPrP aggregation and exhibit pH dependence. However, RaPrP aggregated to a lesser extent than MuPrP in the presence of any of the cofactors tested. The binding affinity with cofactors does not correlate with these low levels of aggregation, suggesting that the latter are related to the stability of PrP at acidic pH. The absence of the N-terminus affected the interaction with cofactors, influencing the efficiency of aggregation. These findings demonstrate that the interaction with polyanionic cofactors is related to rabbit PrP being less susceptible to aggregation in vitro and that the N-terminal domain is important to the efficiency of conversion, increasing the interaction with cofactors. The decreased effect of cofactors in rabbit PrP likely explains its lower propensity to prion conversion. Frontiers Media S.A. 2021-06-18 /pmc/articles/PMC8249948/ /pubmed/34220442 http://dx.doi.org/10.3389/fnins.2021.689315 Text en Copyright © 2021 Angelli, Passos, Brito, Silva, Cordeiro and Vieira. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Neuroscience Angelli, Juliana N. Passos, Yulli M. Brito, Julyana M. A. Silva, Jerson L. Cordeiro, Yraima Vieira, Tuane C. R. G. Rabbit PrP Is Partially Resistant to in vitro Aggregation Induced by Different Biological Cofactors |
title | Rabbit PrP Is Partially Resistant to in vitro Aggregation Induced by Different Biological Cofactors |
title_full | Rabbit PrP Is Partially Resistant to in vitro Aggregation Induced by Different Biological Cofactors |
title_fullStr | Rabbit PrP Is Partially Resistant to in vitro Aggregation Induced by Different Biological Cofactors |
title_full_unstemmed | Rabbit PrP Is Partially Resistant to in vitro Aggregation Induced by Different Biological Cofactors |
title_short | Rabbit PrP Is Partially Resistant to in vitro Aggregation Induced by Different Biological Cofactors |
title_sort | rabbit prp is partially resistant to in vitro aggregation induced by different biological cofactors |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8249948/ https://www.ncbi.nlm.nih.gov/pubmed/34220442 http://dx.doi.org/10.3389/fnins.2021.689315 |
work_keys_str_mv | AT angellijulianan rabbitprpispartiallyresistanttoinvitroaggregationinducedbydifferentbiologicalcofactors AT passosyullim rabbitprpispartiallyresistanttoinvitroaggregationinducedbydifferentbiologicalcofactors AT britojulyanama rabbitprpispartiallyresistanttoinvitroaggregationinducedbydifferentbiologicalcofactors AT silvajersonl rabbitprpispartiallyresistanttoinvitroaggregationinducedbydifferentbiologicalcofactors AT cordeiroyraima rabbitprpispartiallyresistanttoinvitroaggregationinducedbydifferentbiologicalcofactors AT vieiratuanecrg rabbitprpispartiallyresistanttoinvitroaggregationinducedbydifferentbiologicalcofactors |