Cargando…
Microbiome Preprocessing Machine Learning Pipeline
BACKGROUND: 16S sequencing results are often used for Machine Learning (ML) tasks. 16S gene sequences are represented as feature counts, which are associated with taxonomic representation. Raw feature counts may not be the optimal representation for ML. METHODS: We checked multiple preprocessing ste...
Autores principales: | Jasner, Yoel, Belogolovski, Anna, Ben-Itzhak, Meirav, Koren, Omry, Louzoun, Yoram |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8250139/ https://www.ncbi.nlm.nih.gov/pubmed/34220823 http://dx.doi.org/10.3389/fimmu.2021.677870 |
Ejemplares similares
-
Ordering taxa in image convolution networks improves microbiome-based machine learning accuracy
por: Shtossel, Oshrit, et al.
Publicado: (2023) -
Modulation of cytokine patterns and microbiome during pregnancy in IBD
por: van der Giessen, Janine, et al.
Publicado: (2020) -
Overview of data preprocessing for machine learning applications in human microbiome research
por: Ibrahimi, Eliana, et al.
Publicado: (2023) -
Interleukin 1α-Deficient Mice Have an Altered Gut Microbiota Leading to Protection from Dextran Sodium Sulfate-Induced Colitis
por: Nunberg, Moran, et al.
Publicado: (2018) -
Projection of Gut Microbiome Pre- and Post-Bariatric Surgery To Predict Surgery Outcome
por: Ben Izhak, Meirav, et al.
Publicado: (2021)