Cargando…

Insights into coronavirus immunity taught by the murine coronavirus

Coronaviruses (CoVs) represent enveloped, ss RNA viruses with the ability to infect a range of vertebrates causing mainly lung, CNS, enteric, and hepatic disease. While the infection with human CoV is commonly associated with mild respiratory symptoms, the emergence of SARS‐CoV, MERS‐CoV, and SARS‐C...

Descripción completa

Detalles Bibliográficos
Autores principales: Grabherr, Sarah, Ludewig, Burkhard, Pikor, Natalia Barbara
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8250324/
https://www.ncbi.nlm.nih.gov/pubmed/33687066
http://dx.doi.org/10.1002/eji.202048984
Descripción
Sumario:Coronaviruses (CoVs) represent enveloped, ss RNA viruses with the ability to infect a range of vertebrates causing mainly lung, CNS, enteric, and hepatic disease. While the infection with human CoV is commonly associated with mild respiratory symptoms, the emergence of SARS‐CoV, MERS‐CoV, and SARS‐CoV‐2 highlights the potential for CoVs to cause severe respiratory and systemic disease. The devastating global health burden caused by SARS‐CoV‐2 has spawned countless studies seeking clinical correlates of disease severity and host susceptibility factors, revealing a complex network of antiviral immune circuits. The mouse hepatitis virus (MHV) is, like SARS‐CoV‐2, a beta‐CoV and is endemic in wild mice. Laboratory MHV strains have been extensively studied to reveal coronavirus virulence factors and elucidate host mechanisms of antiviral immunity. These are reviewed here with the aim to identify translational insights for SARS‐CoV‐2 learned from murine CoVs.