Cargando…
ADVIAN: Alzheimer's Disease VGG-Inspired Attention Network Based on Convolutional Block Attention Module and Multiple Way Data Augmentation
Aim: Alzheimer's disease is a neurodegenerative disease that causes 60–70% of all cases of dementia. This study is to provide a novel method that can identify AD more accurately. Methods: We first propose a VGG-inspired network (VIN) as the backbone network and investigate the use of attention...
Autores principales: | Wang, Shui-Hua, Zhou, Qinghua, Yang, Ming, Zhang, Yu-Dong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8250430/ https://www.ncbi.nlm.nih.gov/pubmed/34220487 http://dx.doi.org/10.3389/fnagi.2021.687456 |
Ejemplares similares
-
P_VggNet: A convolutional neural network (CNN) with pixel-based attention map
por: Liu, Kunhua, et al.
Publicado: (2018) -
AVNC: Attention-Based VGG-Style Network for COVID-19 Diagnosis by CBAM
Publicado: (2021) -
Optimization of pneumonia CT classification model using RepVGG and spatial attention features
por: Zhang, Qinyi, et al.
Publicado: (2023) -
Attention-based VGG-16 model for COVID-19 chest X-ray image classification
por: Sitaula, Chiranjibi, et al.
Publicado: (2020) -
Prediction of Peptide Detectability Based on CapsNet and Convolutional Block Attention Module
por: Yu, Minzhe, et al.
Publicado: (2021)