Cargando…
Bayesian spatiotemporal forecasting and mapping of COVID‐19 risk with application to West Java Province, Indonesia
The coronavirus disease (COVID‐19) has spread rapidly to multiple countries including Indonesia. Mapping its spatiotemporal pattern and forecasting (small area) outbreaks are crucial for containment and mitigation strategies. Hence, we introduce a parsimonious space–time model of new infections that...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8250786/ https://www.ncbi.nlm.nih.gov/pubmed/34230688 http://dx.doi.org/10.1111/jors.12533 |
Sumario: | The coronavirus disease (COVID‐19) has spread rapidly to multiple countries including Indonesia. Mapping its spatiotemporal pattern and forecasting (small area) outbreaks are crucial for containment and mitigation strategies. Hence, we introduce a parsimonious space–time model of new infections that yields accurate forecasts but only requires information regarding the number of incidences and population size per geographical unit and time period. Model parsimony is important because of limited knowledge regarding the causes of COVID‐19 and the need for rapid action to control outbreaks. We outline the basics of Bayesian estimation, forecasting, and mapping, in particular for the identification of hotspots. The methodology is applied to county‐level data of West Java Province, Indonesia. |
---|