Cargando…

Visualisation of Chemical Shielding Tensors (VIST) to Elucidate Aromaticity and Antiaromaticity

Aromaticity is a central concept in chemistry, pervading areas from biochemistry to materials science. Recently, chemists also started to exploit intricate phenomena such as the interplay of local and global (anti)aromaticity or aromaticity in non‐planar systems and three dimensions. These phenomena...

Descripción completa

Detalles Bibliográficos
Autores principales: Plasser, Felix, Glöcklhofer, Florian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8251739/
https://www.ncbi.nlm.nih.gov/pubmed/34248413
http://dx.doi.org/10.1002/ejoc.202100352
Descripción
Sumario:Aromaticity is a central concept in chemistry, pervading areas from biochemistry to materials science. Recently, chemists also started to exploit intricate phenomena such as the interplay of local and global (anti)aromaticity or aromaticity in non‐planar systems and three dimensions. These phenomena pose new challenges in terms of our fundamental understanding and the practical visualisation of aromaticity. To overcome these challenges, a method for the visualisation of chemical shielding tensors (VIST) is developed here that allows for a 3D visualisation with quantitative information about the local variations and anisotropy of the chemical shielding. After exemplifying the method in different planar hydrocarbons, we study two non‐planar macrocycles to show the unique benefits of the VIST method for molecules with competing π‐conjugated systems and conclude with a norcorrole dimer showing clear evidence of through‐space aromaticity. We believe that the VIST method will be a highly valuable addition to the computational toolbox.