Cargando…

An MRI framework for respiratory motion modelling validation

INTRODUCTION: Respiratory motion models establish a correspondence between respiratory‐correlated (RC) 4‐dimensional (4D) imaging and respiratory surrogates, to estimate time‐resolved (TR) 3D breathing motion. To evaluate the performance of motion models on real patient data, a validation framework...

Descripción completa

Detalles Bibliográficos
Autores principales: Meschini, Giorgia, Paganelli, Chiara, Vai, Alessandro, Fontana, Giulia, Molinelli, Silvia, Pella, Andrea, Vitolo, Viviana, Barcellini, Amelia, Orlandi, Ester, Ciocca, Mario, Riboldi, Marco, Baroni, Guido
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8251859/
https://www.ncbi.nlm.nih.gov/pubmed/33773081
http://dx.doi.org/10.1111/1754-9485.13175
_version_ 1783717177909575680
author Meschini, Giorgia
Paganelli, Chiara
Vai, Alessandro
Fontana, Giulia
Molinelli, Silvia
Pella, Andrea
Vitolo, Viviana
Barcellini, Amelia
Orlandi, Ester
Ciocca, Mario
Riboldi, Marco
Baroni, Guido
author_facet Meschini, Giorgia
Paganelli, Chiara
Vai, Alessandro
Fontana, Giulia
Molinelli, Silvia
Pella, Andrea
Vitolo, Viviana
Barcellini, Amelia
Orlandi, Ester
Ciocca, Mario
Riboldi, Marco
Baroni, Guido
author_sort Meschini, Giorgia
collection PubMed
description INTRODUCTION: Respiratory motion models establish a correspondence between respiratory‐correlated (RC) 4‐dimensional (4D) imaging and respiratory surrogates, to estimate time‐resolved (TR) 3D breathing motion. To evaluate the performance of motion models on real patient data, a validation framework based on magnetic resonance imaging (MRI) is proposed, entailing the use of RC 4DMRI to build the model, and on both (i) TR 2D cine‐MRI and (ii) additional 4DMRI data for testing intra‐/inter‐fraction breathing motion variability. METHODS: Repeated MRI data were acquired in 7 patients with abdominal lesions. The considered model relied on deformable image registration (DIR) for building the model and compensating for inter‐fraction baseline variations. Both 2D and 3D validation were performed, by comparing model estimations with the ground truth 2D cine‐MRI and 4DMRI respiratory phases, respectively. RESULTS: The median DIR error was comparable to the voxel size (1.33 × 1.33 × 5 mm(3)), with higher values in the presence of large inter‐fraction motion (median value: 2.97 mm). In the 2D validation, the median estimation error on anatomical landmarks’ position resulted below 4 mm in every scenario, whereas in the 3D validation it was 1.33 mm and 4.21 mm when testing intra‐ and inter‐fraction motion, respectively. The range of motion described in the cine‐MRI was comparable to the motion of the building 4DMRI, being always above the estimation error. Overall, the model performance was dependent on DIR error, presenting reduced accuracy when inter‐fraction baseline variations occurred. CONCLUSIONS: Results suggest the potential of the proposed framework in evaluating global motion models for organ motion management in MRI‐guided radiotherapy.
format Online
Article
Text
id pubmed-8251859
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-82518592021-07-07 An MRI framework for respiratory motion modelling validation Meschini, Giorgia Paganelli, Chiara Vai, Alessandro Fontana, Giulia Molinelli, Silvia Pella, Andrea Vitolo, Viviana Barcellini, Amelia Orlandi, Ester Ciocca, Mario Riboldi, Marco Baroni, Guido J Med Imaging Radiat Oncol MEDICAL IMAGING—RADIATION ONCOLOGY INTRODUCTION: Respiratory motion models establish a correspondence between respiratory‐correlated (RC) 4‐dimensional (4D) imaging and respiratory surrogates, to estimate time‐resolved (TR) 3D breathing motion. To evaluate the performance of motion models on real patient data, a validation framework based on magnetic resonance imaging (MRI) is proposed, entailing the use of RC 4DMRI to build the model, and on both (i) TR 2D cine‐MRI and (ii) additional 4DMRI data for testing intra‐/inter‐fraction breathing motion variability. METHODS: Repeated MRI data were acquired in 7 patients with abdominal lesions. The considered model relied on deformable image registration (DIR) for building the model and compensating for inter‐fraction baseline variations. Both 2D and 3D validation were performed, by comparing model estimations with the ground truth 2D cine‐MRI and 4DMRI respiratory phases, respectively. RESULTS: The median DIR error was comparable to the voxel size (1.33 × 1.33 × 5 mm(3)), with higher values in the presence of large inter‐fraction motion (median value: 2.97 mm). In the 2D validation, the median estimation error on anatomical landmarks’ position resulted below 4 mm in every scenario, whereas in the 3D validation it was 1.33 mm and 4.21 mm when testing intra‐ and inter‐fraction motion, respectively. The range of motion described in the cine‐MRI was comparable to the motion of the building 4DMRI, being always above the estimation error. Overall, the model performance was dependent on DIR error, presenting reduced accuracy when inter‐fraction baseline variations occurred. CONCLUSIONS: Results suggest the potential of the proposed framework in evaluating global motion models for organ motion management in MRI‐guided radiotherapy. John Wiley and Sons Inc. 2021-03-26 2021-06 /pmc/articles/PMC8251859/ /pubmed/33773081 http://dx.doi.org/10.1111/1754-9485.13175 Text en © 2021 The Authors. Journal of Medical Imaging and Radiation Oncology published by John Wiley & Sons Australia, Ltd on behalf of Royal Australian and New Zealand College of Radiologists. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle MEDICAL IMAGING—RADIATION ONCOLOGY
Meschini, Giorgia
Paganelli, Chiara
Vai, Alessandro
Fontana, Giulia
Molinelli, Silvia
Pella, Andrea
Vitolo, Viviana
Barcellini, Amelia
Orlandi, Ester
Ciocca, Mario
Riboldi, Marco
Baroni, Guido
An MRI framework for respiratory motion modelling validation
title An MRI framework for respiratory motion modelling validation
title_full An MRI framework for respiratory motion modelling validation
title_fullStr An MRI framework for respiratory motion modelling validation
title_full_unstemmed An MRI framework for respiratory motion modelling validation
title_short An MRI framework for respiratory motion modelling validation
title_sort mri framework for respiratory motion modelling validation
topic MEDICAL IMAGING—RADIATION ONCOLOGY
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8251859/
https://www.ncbi.nlm.nih.gov/pubmed/33773081
http://dx.doi.org/10.1111/1754-9485.13175
work_keys_str_mv AT meschinigiorgia anmriframeworkforrespiratorymotionmodellingvalidation
AT paganellichiara anmriframeworkforrespiratorymotionmodellingvalidation
AT vaialessandro anmriframeworkforrespiratorymotionmodellingvalidation
AT fontanagiulia anmriframeworkforrespiratorymotionmodellingvalidation
AT molinellisilvia anmriframeworkforrespiratorymotionmodellingvalidation
AT pellaandrea anmriframeworkforrespiratorymotionmodellingvalidation
AT vitoloviviana anmriframeworkforrespiratorymotionmodellingvalidation
AT barcelliniamelia anmriframeworkforrespiratorymotionmodellingvalidation
AT orlandiester anmriframeworkforrespiratorymotionmodellingvalidation
AT cioccamario anmriframeworkforrespiratorymotionmodellingvalidation
AT riboldimarco anmriframeworkforrespiratorymotionmodellingvalidation
AT baroniguido anmriframeworkforrespiratorymotionmodellingvalidation
AT meschinigiorgia mriframeworkforrespiratorymotionmodellingvalidation
AT paganellichiara mriframeworkforrespiratorymotionmodellingvalidation
AT vaialessandro mriframeworkforrespiratorymotionmodellingvalidation
AT fontanagiulia mriframeworkforrespiratorymotionmodellingvalidation
AT molinellisilvia mriframeworkforrespiratorymotionmodellingvalidation
AT pellaandrea mriframeworkforrespiratorymotionmodellingvalidation
AT vitoloviviana mriframeworkforrespiratorymotionmodellingvalidation
AT barcelliniamelia mriframeworkforrespiratorymotionmodellingvalidation
AT orlandiester mriframeworkforrespiratorymotionmodellingvalidation
AT cioccamario mriframeworkforrespiratorymotionmodellingvalidation
AT riboldimarco mriframeworkforrespiratorymotionmodellingvalidation
AT baroniguido mriframeworkforrespiratorymotionmodellingvalidation