Cargando…
Impact of retrofitting work on vulnerability reduction of local buildings in Kabul, Afghanistan
Rapid urbanisation of Afghan cities without proper construction regulation has exposed their population to a high risk of damage from disasters such as earthquakes. With the growing construction of local non-engineered buildings and an existing level of hazard of 0.8 g, a high risk of casualties and...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AOSIS
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8252141/ https://www.ncbi.nlm.nih.gov/pubmed/34230849 http://dx.doi.org/10.4102/jamba.v13i1.1062 |
Sumario: | Rapid urbanisation of Afghan cities without proper construction regulation has exposed their population to a high risk of damage from disasters such as earthquakes. With the growing construction of local non-engineered buildings and an existing level of hazard of 0.8 g, a high risk of casualties and building damage threatens Kabul in the event of a disaster. This study reports and evaluates a recent retrofitting project in Kabul City by ‘Project for City Resilience’, carried out under the supervision of the United Nation Human Settlements Program (UN-Habitat) for 48 retrofitted sun-dried clay brick masonry buildings in Kabul. The project was executed by local masons and welders who were trained as a part of the project, and the main tasks included installation of an additional steel frame, additional reinforced concrete foundation ring, ceiling replacement and wall strengthening (via mesh and plaster). After a visual assessment of retrofitted buildings considering the original retrofitting design and actual work done, a vulnerability index for retrofitted buildings was developed based on a behaviour modifier factor, which was assigned to each retrofitting activity using a combination of values and a proportion of scores for each retrofitting activity. The results indicate that training of local masons and welders to undertake retrofitting activities could decrease the damage ratio by 15% – 20% for peak ground acceleration values of 0.3 g and higher. The methods mentioned in this study can be used to make existing sun-dried clay brick masonry buildings sufficiently resistant to earthquakes of moderate-to-severe intensity. |
---|