Cargando…

G‐Quadruplex Formation in a Putative Coding Region of White Spot Syndrome Virus: Structural and Thermodynamic Aspects

White spot disease (WSD) is one of the most devastating viral infections of crustaceans caused by the white spot syndrome virus (WSSV). A conserved sequence WSSV131 in the DNA genome of WSSV was found to fold into a polymorphic G‐quadruplex structure. Supported by two mutant sequences with single G→...

Descripción completa

Detalles Bibliográficos
Autores principales: Vianney, Yoanes Maria, Purwanto, Maria Goretti M., Weisz, Klaus
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8252560/
https://www.ncbi.nlm.nih.gov/pubmed/33710715
http://dx.doi.org/10.1002/cbic.202100064
Descripción
Sumario:White spot disease (WSD) is one of the most devastating viral infections of crustaceans caused by the white spot syndrome virus (WSSV). A conserved sequence WSSV131 in the DNA genome of WSSV was found to fold into a polymorphic G‐quadruplex structure. Supported by two mutant sequences with single G→T substitutions in the third G(4) tract of WSSV131, circular dichroism and NMR spectroscopic analyses demonstrate folding of the wild‐type sequence into a three‐tetrad parallel topology comprising three propeller loops with a major 1 : 3 : 1 and a minor 1 : 2 : 2 loop length arrangement. A thermodynamic analysis of quadruplex formation by differential scanning calorimetry (DSC) indicates a thermodynamically more stable 1 : 3 : 1 loop isomer. DSC also revealed the formation of additional highly stable multimeric species with populations depending on potassium ion concentration.