Cargando…
Developing more generalizable prediction models from pooled studies and large clustered data sets
Prediction models often yield inaccurate predictions for new individuals. Large data sets from pooled studies or electronic healthcare records may alleviate this with an increased sample size and variability in sample characteristics. However, existing strategies for prediction model development gen...
Autores principales: | de Jong, Valentijn M. T., Moons, Karel G. M., Eijkemans, Marinus J. C., Riley, Richard D., Debray, Thomas P. A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8252590/ https://www.ncbi.nlm.nih.gov/pubmed/33948970 http://dx.doi.org/10.1002/sim.8981 |
Ejemplares similares
-
Individual participant data meta‐analysis of intervention studies with time‐to‐event outcomes: A review of the methodology and an applied example
por: de Jong, Valentijn M.T., et al.
Publicado: (2020) -
Evidence synthesis in prognosis research
por: Debray, Thomas P.A., et al.
Publicado: (2019) -
Transparent reporting of multivariable prediction models developed or validated using clustered data: TRIPOD-Cluster checklist
por: Debray, Thomas P A, et al.
Publicado: (2023) -
Transparent reporting of multivariable prediction models developed or validated using clustered data (TRIPOD-Cluster): explanation and elaboration
por: Debray, Thomas P A, et al.
Publicado: (2023) -
Sample size considerations and predictive performance of multinomial logistic prediction models
por: de Jong, Valentijn M. T., et al.
Publicado: (2019)