Cargando…
3D amplified MRI (aMRI)
PURPOSE: Amplified MRI (aMRI) has been introduced as a new method of detecting and visualizing pulsatile brain motion in 2D. Here, we improve aMRI by introducing a novel 3D aMRI approach. METHODS: 3D aMRI was developed and tested for its ability to amplify sub‐voxel motion in all three directions. I...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8252598/ https://www.ncbi.nlm.nih.gov/pubmed/33949713 http://dx.doi.org/10.1002/mrm.28797 |
Sumario: | PURPOSE: Amplified MRI (aMRI) has been introduced as a new method of detecting and visualizing pulsatile brain motion in 2D. Here, we improve aMRI by introducing a novel 3D aMRI approach. METHODS: 3D aMRI was developed and tested for its ability to amplify sub‐voxel motion in all three directions. In addition, 3D aMRI was qualitatively compared to 2D aMRI on multi‐slice and 3D (volumetric) balanced steady‐state free precession cine data and phase contrast (PC‐MRI) acquired on healthy volunteers at 3T. Optical flow maps and 4D animations were produced from volumetric 3D aMRI data. RESULTS: 3D aMRI exhibits better image quality and fewer motion artifacts compared to 2D aMRI. The tissue motion was seen to match that of PC‐MRI, with the predominant brain tissue displacement occurring in the cranial‐caudal direction. Optical flow maps capture the brain tissue motion and display the physical change in shape of the ventricles by the relative movement of the surrounding tissues. The 4D animations show the complete brain tissue and cerebrospinal fluid (CSF) motion, helping to highlight the “piston‐like” motion of the ventricles. CONCLUSIONS: Here, we introduce a novel 3D aMRI approach that enables one to visualize amplified cardiac‐ and CSF‐induced brain motion in striking detail. 3D aMRI captures brain motion with better image quality than 2D aMRI and supports a larger amplification factor. The optical flow maps and 4D animations of 3D aMRI may open up exciting applications for neurological diseases that affect the biomechanics of the brain and brain fluids. |
---|