Cargando…

Efficient Computation of Geometries for Gold Complexes

Computationally obtaining structural parameters along a reaction coordinate is commonly performed with Kohn‐Sham density functional theory which generally provides a good balance between speed and accuracy. However, CPU times still range from inconvenient to prohibitive, depending on the size of the...

Descripción completa

Detalles Bibliográficos
Autores principales: Leach, Isaac F., Belpassi, Leonardo, Belanzoni, Paola, Havenith, Remco W. A., Klein, Johannes E. M. N.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8252628/
https://www.ncbi.nlm.nih.gov/pubmed/33729673
http://dx.doi.org/10.1002/cphc.202001052
Descripción
Sumario:Computationally obtaining structural parameters along a reaction coordinate is commonly performed with Kohn‐Sham density functional theory which generally provides a good balance between speed and accuracy. However, CPU times still range from inconvenient to prohibitive, depending on the size of the system under study. Herein, the tight binding GFN2‐xTB method [C. Bannwarth, S. Ehlert, S. Grimme, J. Chem. Theory Comput. 2019, 15, 1652] is investigated as an alternative to produce reasonable geometries along a reaction path, that is, reactant, product and transition state structures for a series of transformations involving gold complexes. A small mean error (1 kcal/mol) was found, with respect to an efficient composite hybrid‐GGA exchange‐correlation functional (PBEh‐3c) paired with a double‐ζ basis set, which is 2–3 orders of magnitude slower. The outlined protocol may serve as a rapid tool to probe the viability of proposed mechanistic pathways in the field of gold catalysis.