Cargando…
Distinct Sustainable Carbon Nanodots Enable Free Radical Photopolymerization, Photo‐ATRP and Photo‐CuAAC Chemistry
Carbon nanodots (CDs) originating from different biomass result in different activities to sensitize photo‐ATRP and photo‐CuAAC reaction protocols with visible light. Free radical polymerization of tri(propylene glycol)diacrylate also exhibited a good efficiency using CDs in combination with an iodo...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8252733/ https://www.ncbi.nlm.nih.gov/pubmed/33576086 http://dx.doi.org/10.1002/anie.202015677 |
_version_ | 1783717362428542976 |
---|---|
author | Kütahya, Ceren Zhai, Yingxiang Li, Shujun Liu, Shouxin Li, Jian Strehmel, Veronika Chen, Zhijun Strehmel, Bernd |
author_facet | Kütahya, Ceren Zhai, Yingxiang Li, Shujun Liu, Shouxin Li, Jian Strehmel, Veronika Chen, Zhijun Strehmel, Bernd |
author_sort | Kütahya, Ceren |
collection | PubMed |
description | Carbon nanodots (CDs) originating from different biomass result in different activities to sensitize photo‐ATRP and photo‐CuAAC reaction protocols with visible light. Free radical polymerization of tri(propylene glycol)diacrylate also exhibited a good efficiency using CDs in combination with an iodonium salt employing LEDs emitting either at 405 nm, 525 nm or 660 nm. Photo‐ATRP experiments confirmed controlled polymerization conditions using Cu(II) at the ppm scale resulting in dispersities between 1.06 to 1.10. Chain end fidelity was successfully provided by chain extension and block copolymerization additionally approving the living feature of polymerization using a CD synthesized from lac dye comprising olefinic moieties in the originating biomass. By global analysis, time resolved fluorescence measurements indicated the appearance of several emitting species contributing to the reactivity of the excited states. Different cytotoxic response appeared following the answer of MCF‐10A cells in a flow cytometry assay; that is 400 μg mL(−1). Thus, cell viability was greater 80 % in the case of CD‐2–CD‐5 while that of CD‐1 was close to 70 %. |
format | Online Article Text |
id | pubmed-8252733 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-82527332021-07-12 Distinct Sustainable Carbon Nanodots Enable Free Radical Photopolymerization, Photo‐ATRP and Photo‐CuAAC Chemistry Kütahya, Ceren Zhai, Yingxiang Li, Shujun Liu, Shouxin Li, Jian Strehmel, Veronika Chen, Zhijun Strehmel, Bernd Angew Chem Int Ed Engl Research Articles Carbon nanodots (CDs) originating from different biomass result in different activities to sensitize photo‐ATRP and photo‐CuAAC reaction protocols with visible light. Free radical polymerization of tri(propylene glycol)diacrylate also exhibited a good efficiency using CDs in combination with an iodonium salt employing LEDs emitting either at 405 nm, 525 nm or 660 nm. Photo‐ATRP experiments confirmed controlled polymerization conditions using Cu(II) at the ppm scale resulting in dispersities between 1.06 to 1.10. Chain end fidelity was successfully provided by chain extension and block copolymerization additionally approving the living feature of polymerization using a CD synthesized from lac dye comprising olefinic moieties in the originating biomass. By global analysis, time resolved fluorescence measurements indicated the appearance of several emitting species contributing to the reactivity of the excited states. Different cytotoxic response appeared following the answer of MCF‐10A cells in a flow cytometry assay; that is 400 μg mL(−1). Thus, cell viability was greater 80 % in the case of CD‐2–CD‐5 while that of CD‐1 was close to 70 %. John Wiley and Sons Inc. 2021-03-17 2021-05-03 /pmc/articles/PMC8252733/ /pubmed/33576086 http://dx.doi.org/10.1002/anie.202015677 Text en © 2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
spellingShingle | Research Articles Kütahya, Ceren Zhai, Yingxiang Li, Shujun Liu, Shouxin Li, Jian Strehmel, Veronika Chen, Zhijun Strehmel, Bernd Distinct Sustainable Carbon Nanodots Enable Free Radical Photopolymerization, Photo‐ATRP and Photo‐CuAAC Chemistry |
title | Distinct Sustainable Carbon Nanodots Enable Free Radical Photopolymerization, Photo‐ATRP and Photo‐CuAAC Chemistry |
title_full | Distinct Sustainable Carbon Nanodots Enable Free Radical Photopolymerization, Photo‐ATRP and Photo‐CuAAC Chemistry |
title_fullStr | Distinct Sustainable Carbon Nanodots Enable Free Radical Photopolymerization, Photo‐ATRP and Photo‐CuAAC Chemistry |
title_full_unstemmed | Distinct Sustainable Carbon Nanodots Enable Free Radical Photopolymerization, Photo‐ATRP and Photo‐CuAAC Chemistry |
title_short | Distinct Sustainable Carbon Nanodots Enable Free Radical Photopolymerization, Photo‐ATRP and Photo‐CuAAC Chemistry |
title_sort | distinct sustainable carbon nanodots enable free radical photopolymerization, photo‐atrp and photo‐cuaac chemistry |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8252733/ https://www.ncbi.nlm.nih.gov/pubmed/33576086 http://dx.doi.org/10.1002/anie.202015677 |
work_keys_str_mv | AT kutahyaceren distinctsustainablecarbonnanodotsenablefreeradicalphotopolymerizationphotoatrpandphotocuaacchemistry AT zhaiyingxiang distinctsustainablecarbonnanodotsenablefreeradicalphotopolymerizationphotoatrpandphotocuaacchemistry AT lishujun distinctsustainablecarbonnanodotsenablefreeradicalphotopolymerizationphotoatrpandphotocuaacchemistry AT liushouxin distinctsustainablecarbonnanodotsenablefreeradicalphotopolymerizationphotoatrpandphotocuaacchemistry AT lijian distinctsustainablecarbonnanodotsenablefreeradicalphotopolymerizationphotoatrpandphotocuaacchemistry AT strehmelveronika distinctsustainablecarbonnanodotsenablefreeradicalphotopolymerizationphotoatrpandphotocuaacchemistry AT chenzhijun distinctsustainablecarbonnanodotsenablefreeradicalphotopolymerizationphotoatrpandphotocuaacchemistry AT strehmelbernd distinctsustainablecarbonnanodotsenablefreeradicalphotopolymerizationphotoatrpandphotocuaacchemistry |