Cargando…
Dynamics of stochastic gradient descent for two-layer neural networks in the teacher–student setup
Deep neural networks achieve stellar generalisation even when they have enough parameters to easily fit all their training data. We study this phenomenon by analysing the dynamics and the performance of over-parameterised two-layer neural networks in the teacher–student setup, where one network, the...
Autores principales: | Goldt, Sebastian, Advani, Madhu S, Saxe, Andrew M, Krzakala, Florent, Zdeborová, Lenka |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
IOP Publishing and SISSA
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8252911/ https://www.ncbi.nlm.nih.gov/pubmed/34262607 http://dx.doi.org/10.1088/1742-5468/abc61e |
Ejemplares similares
-
Bayesian reconstruction of memories stored in neural networks from their connectivity
por: Goldt, Sebastian, et al.
Publicado: (2023) -
Optimal errors and phase transitions in high-dimensional generalized linear models
por: Barbier, Jean, et al.
Publicado: (2019) -
Stochastic gradient descent for optimization for nuclear systems
por: Williams, Austin, et al.
Publicado: (2023) -
Stochastic gradient descent optimisation for convolutional neural network for medical image segmentation
por: Nagendram, Sanam, et al.
Publicado: (2023) -
Statistical Physics, Optimization, Inference, and Message-Passing Algorithms : Lecture Notes of the Les Houches School of Physics : Special Issue, October 2013
por: Krzakala, Florent, et al.
Publicado: (2015)