Cargando…
Spectral estimation for detecting low-dimensional structure in networks using arbitrary null models
Discovering low-dimensional structure in real-world networks requires a suitable null model that defines the absence of meaningful structure. Here we introduce a spectral approach for detecting a network’s low-dimensional structure, and the nodes that participate in it, using any null model. We use...
Autores principales: | Humphries, Mark D., Caballero, Javier A., Evans, Mat, Maggi, Silvia, Singh, Abhinav |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8253422/ https://www.ncbi.nlm.nih.gov/pubmed/34214126 http://dx.doi.org/10.1371/journal.pone.0254057 |
Ejemplares similares
-
Quantum Nonlocality of Arbitrary Dimensional Bipartite States
por: Li, Ming, et al.
Publicado: (2015) -
ArbGaze: Gaze Estimation from Arbitrary-Sized Low-Resolution Images
por: Kim, Hee Gyoon, et al.
Publicado: (2022) -
Arbitrary-Shaped Text Detection with B-Spline Curve Network
por: You, Yuwei, et al.
Publicado: (2023) -
Saturation regime of THz generation in nonlinear crystals by pumps with arbitrary spectral modulations
por: Curcio, A, et al.
Publicado: (2020) -
A generalized mathematical framework for estimating the residue function for arbitrary vascular networks
por: Park, Chang Sub, et al.
Publicado: (2013)