Cargando…
Predicting the water film depth: A model based on the geometric features of road and capacity of drainage facilities
The water film depth is a key variable that affects traffic safety under rainfall conditions. According to the Federal Highway Administration, approximately 5700 people are killed and more than 544 700 people are injured in crashes on wet pavements annually. While several studies have attempted to a...
Autores principales: | Han, Shuo, Xu, Jinliang, Yan, Menghua, Gao, Sunjian, Li, Xufeng, Huang, Xunjiang, Liu, Zhaoxin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8253438/ https://www.ncbi.nlm.nih.gov/pubmed/34214083 http://dx.doi.org/10.1371/journal.pone.0252767 |
Ejemplares similares
-
Using multiple linear regression and BP neural network to predict critical meteorological conditions of expressway bridge pavement icing
por: Han, Shuo, et al.
Publicado: (2022) -
Estimation of Water Depth on Road Surfaces Using Accelerometric Signals
por: Riahi, Ebrahim, et al.
Publicado: (2022) -
Direct Depth SLAM: Sparse Geometric Feature Enhanced Direct Depth SLAM System for Low-Texture Environments
por: Zhao, Shibo, et al.
Publicado: (2018) -
Scenario-feature identification from online reviews based on BERT
por: Huang, Xunjiang, et al.
Publicado: (2023) -
Permitted speed decision of single-unit trucks with emergency braking maneuver on horizontal curves under rainy weather
por: Yan, Menghua, et al.
Publicado: (2021)