Cargando…
Investigating the impact of pre-processing techniques and pre-trained word embeddings in detecting Arabic health information on social media
This paper presents a comprehensive evaluation of data pre-processing and word embedding techniques in the context of Arabic document classification in the domain of health-related communication on social media. We evaluate 26 text pre-processings applied to Arabic tweets within the process of train...
Autores principales: | Albalawi, Yahya, Buckley, Jim, Nikolov, Nikola S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8253467/ https://www.ncbi.nlm.nih.gov/pubmed/34249602 http://dx.doi.org/10.1186/s40537-021-00488-w |
Ejemplares similares
-
Pretrained Transformer Language Models Versus Pretrained Word Embeddings for the Detection of Accurate Health Information on Arabic Social Media: Comparative Study
por: Albalawi, Yahya, et al.
Publicado: (2022) -
Trustworthy Health-Related Tweets on Social Media in Saudi Arabia: Tweet Metadata Analysis
por: Albalawi, Yahya, et al.
Publicado: (2019) -
Combining Character and Word Embeddings for Affect in Arabic Informal Social Media Microblogs
por: Alharbi, Abdullah I., et al.
Publicado: (2020) -
Protein-Protein Interaction Article Classification Using a Convolutional Recurrent Neural Network with Pre-trained Word Embeddings
por: Matos, Sérgio, et al.
Publicado: (2017) -
An Automated Toxicity Classification on Social Media Using LSTM and Word Embedding
por: Alsharef, Ahmad, et al.
Publicado: (2022)