Cargando…

Identification and Validation of Autophagy-Related Gene Nomograms to Predict the Prognostic Value of Patients with Cervical Cancer

Autophagy is a process of engulfing one's own cytoplasmic proteins or organelles and coating them into vesicles, fusing with lysosomes to form autophagic lysosomes, and degrading the contents it encapsulates. Increasing studies have shown that autophagy disorders are closely related to the occu...

Descripción completa

Detalles Bibliográficos
Autores principales: Jiang, Jinqun, Xu, HongYan, Wang, YiHao, Lu, Hai
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8253645/
https://www.ncbi.nlm.nih.gov/pubmed/34257653
http://dx.doi.org/10.1155/2021/5583400
_version_ 1783717556597555200
author Jiang, Jinqun
Xu, HongYan
Wang, YiHao
Lu, Hai
author_facet Jiang, Jinqun
Xu, HongYan
Wang, YiHao
Lu, Hai
author_sort Jiang, Jinqun
collection PubMed
description Autophagy is a process of engulfing one's own cytoplasmic proteins or organelles and coating them into vesicles, fusing with lysosomes to form autophagic lysosomes, and degrading the contents it encapsulates. Increasing studies have shown that autophagy disorders are closely related to the occurrence of tumors. However, the prognostic role of autophagy genes in cervical cancer is still unclear. In this study, we constructed risk signatures of autophagy-related genes (ARGs) to predict the prognosis of cervical cancer. The expression profiles and clinical information of autophagy gene sets were downloaded from TCGA and GSE52903 queues as training and validation sets. The normal cervical tissue expression profile data from the UCSC XENA website (obtained from GTEx) were used as a supplement to the TCGA normal cervical tissue. Univariate COX regression analysis of 17 different autophagy genes was performed with the consensus approach. Tumor samples from TCGA were divided into six subtypes, and the clinical traits of the six subtypes had different distributions. Further absolute shrinkage and selection operator (LASSO) and multivariable COX regression yielded an autophagy genetic risk model consisting of eight genes. In the training set, the survival rate of the high-risk group was lower than that of the low-risk group (p < 0.0001). In the validation set, the AUC area of the receiver operating characteristic (ROC) curve was 0.772 for the training set and 0.889 for the verification set. We found that high and low risk scores were closely related to TNM stage (p < 0.05). The nomogram shows that the risk score combined with other indicators, such as G, T, M, and N, better predicts 1-, 3-, and 5-year survival rates. Decline curve analysis (DCA) shows that the risk model combined with other indicators produces better clinical efficacy. Immune cells with an enrichment score of 28 showed statistically significant differences related to high and low risk. GSEA enrichment analysis showed the main enrichment being in KRAS activation, genes defining epithelial and mesenchymal transition (EMT), raised in response to the low oxygen level (hypoxia) gene and NF-kB in response to TNF. These pathways are closely related to the occurrence of tumors. Our constructed autophagy risk signature may be a prognostic tool for cervical cancer.
format Online
Article
Text
id pubmed-8253645
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Hindawi
record_format MEDLINE/PubMed
spelling pubmed-82536452021-07-12 Identification and Validation of Autophagy-Related Gene Nomograms to Predict the Prognostic Value of Patients with Cervical Cancer Jiang, Jinqun Xu, HongYan Wang, YiHao Lu, Hai J Oncol Research Article Autophagy is a process of engulfing one's own cytoplasmic proteins or organelles and coating them into vesicles, fusing with lysosomes to form autophagic lysosomes, and degrading the contents it encapsulates. Increasing studies have shown that autophagy disorders are closely related to the occurrence of tumors. However, the prognostic role of autophagy genes in cervical cancer is still unclear. In this study, we constructed risk signatures of autophagy-related genes (ARGs) to predict the prognosis of cervical cancer. The expression profiles and clinical information of autophagy gene sets were downloaded from TCGA and GSE52903 queues as training and validation sets. The normal cervical tissue expression profile data from the UCSC XENA website (obtained from GTEx) were used as a supplement to the TCGA normal cervical tissue. Univariate COX regression analysis of 17 different autophagy genes was performed with the consensus approach. Tumor samples from TCGA were divided into six subtypes, and the clinical traits of the six subtypes had different distributions. Further absolute shrinkage and selection operator (LASSO) and multivariable COX regression yielded an autophagy genetic risk model consisting of eight genes. In the training set, the survival rate of the high-risk group was lower than that of the low-risk group (p < 0.0001). In the validation set, the AUC area of the receiver operating characteristic (ROC) curve was 0.772 for the training set and 0.889 for the verification set. We found that high and low risk scores were closely related to TNM stage (p < 0.05). The nomogram shows that the risk score combined with other indicators, such as G, T, M, and N, better predicts 1-, 3-, and 5-year survival rates. Decline curve analysis (DCA) shows that the risk model combined with other indicators produces better clinical efficacy. Immune cells with an enrichment score of 28 showed statistically significant differences related to high and low risk. GSEA enrichment analysis showed the main enrichment being in KRAS activation, genes defining epithelial and mesenchymal transition (EMT), raised in response to the low oxygen level (hypoxia) gene and NF-kB in response to TNF. These pathways are closely related to the occurrence of tumors. Our constructed autophagy risk signature may be a prognostic tool for cervical cancer. Hindawi 2021-06-25 /pmc/articles/PMC8253645/ /pubmed/34257653 http://dx.doi.org/10.1155/2021/5583400 Text en Copyright © 2021 Jinqun Jiang et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Jiang, Jinqun
Xu, HongYan
Wang, YiHao
Lu, Hai
Identification and Validation of Autophagy-Related Gene Nomograms to Predict the Prognostic Value of Patients with Cervical Cancer
title Identification and Validation of Autophagy-Related Gene Nomograms to Predict the Prognostic Value of Patients with Cervical Cancer
title_full Identification and Validation of Autophagy-Related Gene Nomograms to Predict the Prognostic Value of Patients with Cervical Cancer
title_fullStr Identification and Validation of Autophagy-Related Gene Nomograms to Predict the Prognostic Value of Patients with Cervical Cancer
title_full_unstemmed Identification and Validation of Autophagy-Related Gene Nomograms to Predict the Prognostic Value of Patients with Cervical Cancer
title_short Identification and Validation of Autophagy-Related Gene Nomograms to Predict the Prognostic Value of Patients with Cervical Cancer
title_sort identification and validation of autophagy-related gene nomograms to predict the prognostic value of patients with cervical cancer
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8253645/
https://www.ncbi.nlm.nih.gov/pubmed/34257653
http://dx.doi.org/10.1155/2021/5583400
work_keys_str_mv AT jiangjinqun identificationandvalidationofautophagyrelatedgenenomogramstopredicttheprognosticvalueofpatientswithcervicalcancer
AT xuhongyan identificationandvalidationofautophagyrelatedgenenomogramstopredicttheprognosticvalueofpatientswithcervicalcancer
AT wangyihao identificationandvalidationofautophagyrelatedgenenomogramstopredicttheprognosticvalueofpatientswithcervicalcancer
AT luhai identificationandvalidationofautophagyrelatedgenenomogramstopredicttheprognosticvalueofpatientswithcervicalcancer