Cargando…
Value of Machine Learning with Multiphases CE-MRI Radiomics for Early Prediction of Pathological Complete Response to Neoadjuvant Therapy in HER2-Positive Invasive Breast Cancer
BACKGROUND: To assess the value of radiomics based on multiphases contrast-enhanced magnetic resonance imaging (CE-MRI) for early prediction of pathological complete response (pCR) to neoadjuvant therapy (NAT) in patients with human epithelial growth factor receptor 2 (HER2) positive invasive breast...
Autores principales: | Li, Qin, Xiao, Qin, Li, Jianwei, Wang, Zhe, Wang, He, Gu, Yajia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8253937/ https://www.ncbi.nlm.nih.gov/pubmed/34234550 http://dx.doi.org/10.2147/CMAR.S304547 |
Ejemplares similares
-
MRI-Based Radiomic Signature as a Prognostic Biomarker for HER2-Positive Invasive Breast Cancer Treated with NAC
por: Li, Qin, et al.
Publicado: (2020) -
Machine Learning Predicts Pathologic Complete Response to Neoadjuvant Chemotherapy for ER+HER2- Breast Cancer: Integrating Tumoral and Peritumoral MRI Radiomic Features
por: Park, Jiwoo, et al.
Publicado: (2023) -
Multiphase and multiparameter MRI-based radiomics for prediction of tumor response to neoadjuvant therapy in locally advanced rectal cancer
por: Huang, Hongyan, et al.
Publicado: (2023) -
MRI-based machine learning radiomics can predict HER2 expression level and pathologic response after neoadjuvant therapy in HER2 overexpressing breast cancer
por: Bitencourt, Almir G.V., et al.
Publicado: (2020) -
Four‐Dimensional Machine Learning Radiomics for the Pretreatment Assessment of Breast Cancer Pathologic Complete Response to Neoadjuvant Chemotherapy in Dynamic Contrast‐Enhanced MRI
por: Caballo, Marco, et al.
Publicado: (2022)