Cargando…

Comparative analysis of draft genome assemblies developed from whole genome sequences of two Hyaloperonospora brassicae isolate samples differing in field virulence on Brassica napus

Hyaloperonospora brassicae causes downy mildew, a major disease of Brassicaceae species. We sequenced the genomes of two H. brassicae isolates of high (Sample B) and low (Sample C) virulence. Sequencing reads were first assembled de novo with software's SOAPdenovo2, ABySS V2.1 and Velvet V1.1 a...

Descripción completa

Detalles Bibliográficos
Autores principales: You, Ming Pei, Akhatar, Javed, Mittal, Meenakshi, Barbetti, Martin J., Maina, Solomon, Banga, Surinder S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8254085/
https://www.ncbi.nlm.nih.gov/pubmed/34258242
http://dx.doi.org/10.1016/j.btre.2021.e00653
Descripción
Sumario:Hyaloperonospora brassicae causes downy mildew, a major disease of Brassicaceae species. We sequenced the genomes of two H. brassicae isolates of high (Sample B) and low (Sample C) virulence. Sequencing reads were first assembled de novo with software's SOAPdenovo2, ABySS V2.1 and Velvet V1.1 and later combined to create meta-assemblies with genome sizes of 72.762 and 76.950Mb and predicted gene densities of 1628 and 1644 /Mb, respectively. We could annotate 12.255 and 13,030 genes with high proportions (91-92%) of complete BUSCOs for Sample B and C, respectively. Comparative analysis revealed conserved and varied molecular machinery underlying the physiological specialisation and infection capabilities. BLAST analysis against PHI gene database suggested a relatively higher loss of genes for virulence and pathogenicity in Sample C compared to Sample B, reflecting pathogen evolution through differential rates of mutation and selection. These studies will enable identification and monitoring of H. brassicae virulence factors prevailing in-field.