Cargando…
Diagnostic assessment of deep learning for melanocytic lesions using whole-slide pathological images
BACKGROUND: Deep learning has the potential to improve diagnostic accuracy and efficiency in medical image recognition. In the current study, we developed a deep learning algorithm and assessed its performance in discriminating melanoma from nevus using whole-slide pathological images (WSIs). METHOD...
Autores principales: | Ba, Wei, Wang, Rui, Yin, Guang, Song, Zhigang, Zou, Jinyi, Zhong, Cheng, Yang, Jingrun, Yu, Guanzhen, Yang, Hongyu, Zhang, Litao, Li, Chengxin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Neoplasia Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8254118/ https://www.ncbi.nlm.nih.gov/pubmed/34192650 http://dx.doi.org/10.1016/j.tranon.2021.101161 |
Ejemplares similares
-
Validation of Whole-slide Digitally Imaged Melanocytic Lesions: Does Z-Stack Scanning Improve Diagnostic Accuracy?
por: Sturm, Bart, et al.
Publicado: (2019) -
Classification of Melanocytic Lesions in Selected and Whole-Slide Images via Convolutional Neural Networks
por: Hart, Steven N., et al.
Publicado: (2019) -
Deep Learning for Skin Melanocytic Tumors in Whole-Slide Images: A Systematic Review
por: Mosquera-Zamudio, Andrés, et al.
Publicado: (2022) -
Reproducibility of deep learning in digital pathology whole slide image analysis
por: Fell, Christina, et al.
Publicado: (2022) -
A Deep Multi-Label Segmentation Network For Eosinophilic Esophagitis Whole Slide Biopsy Diagnostics
por: Daniel, Nati, et al.
Publicado: (2022)