Cargando…
Reduction of heart and lung normal tissue complication probability using automatic beam angle optimization and more generic optimization objectives for breast radiotherapy
During breast cancer radiotherapy, sparing of healthy tissue is desired. The effect of automatic beam angle optimization and generic dose fall-off objectives on dose and normal tissue complication probabilities was studied. In all patients, dose to lungs and heart showed a mean reduction of 0.4 Gy (...
Autores principales: | Bakx, Nienke, Bluemink, Hanneke, Hagelaar, Els, van der Leer, Jorien, van der Sangen, Maurice, Theuws, Jacqueline, Hurkmans, Coen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8254193/ https://www.ncbi.nlm.nih.gov/pubmed/34258407 http://dx.doi.org/10.1016/j.phro.2021.04.002 |
Ejemplares similares
-
Development and evaluation of radiotherapy deep learning dose prediction models for breast cancer
por: Bakx, Nienke, et al.
Publicado: (2021) -
Clinical evaluation of two AI models for automated breast cancer plan generation
por: Kneepkens, Esther, et al.
Publicado: (2022) -
Comparison of the output of a deep learning segmentation model for locoregional breast cancer radiotherapy trained on 2 different datasets
por: Bakx, Nienke, et al.
Publicado: (2023) -
Artificial intelligence based treatment planning of radiotherapy for locally advanced breast cancer
por: van de Sande, Dennis, et al.
Publicado: (2021) -
Evaluation of a clinically introduced deep learning model for radiotherapy treatment planning of breast cancer
por: Bakx, Nienke, et al.
Publicado: (2023)