Cargando…

Biomechanical study of transsacral-transiliac screw fixation versus lumbopelvic fixation and bilateral triangular fixation for “H”- and “U”-type sacrum fractures with traumatic spondylopelvic dissociation: a finite element analysis study

OBJECTIVE: To compare the biomechanical stability of transsacral-transiliac screw fixation and lumbopelvic fixation for “H”- and “U”-type sacrum fractures with traumatic spondylopelvic dissociation. METHODS: Finite element models of “H”- and “U”-type sacrum fractures with traumatic spondylopelvic di...

Descripción completa

Detalles Bibliográficos
Autores principales: Peng, Ye, Zhang, Gongzi, Zhang, Shuwei, Ji, Xinran, Li, Junwei, Du, Chengfei, Zhao, Wen, Zhang, Lihai
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8254325/
https://www.ncbi.nlm.nih.gov/pubmed/34217358
http://dx.doi.org/10.1186/s13018-021-02581-5
Descripción
Sumario:OBJECTIVE: To compare the biomechanical stability of transsacral-transiliac screw fixation and lumbopelvic fixation for “H”- and “U”-type sacrum fractures with traumatic spondylopelvic dissociation. METHODS: Finite element models of “H”- and “U”-type sacrum fractures with traumatic spondylopelvic dissociation were created in this study. The models mimicked the standing position of a human. Fixation with transsacral-transiliac screw fixation, lumbopelvic fixation, and bilateral triangular fixation were simulated. Biomechanical tests of instability were performed, and the fracture gap displacement, anteflexion, rotation, and stress distribution after fixation were assessed. RESULTS: For H-type fractures, the three kinds of fixation ranked by stability were bilateral triangular fixation > lumbopelvic fixation > transsacral-transiliac screw fixation in the vertical and anteflexion directions, bilateral triangular fixation > transsacral-transiliac S1 and S2 screw fixation > lumbopelvic fixation in rotation. The largest displacements in the vertical, anteflexion, and rotational directions were 0.57234 mm, 0.37923 mm, and 0.13076 mm, respectively. For U-type fractures, these kinds of fixation ranked by stability were bilateral triangular fixation > lumbopelvic fixation > transsacral-transiliac S1 and S2 screw fixation > transsacral-transiliac S1 screw fixation in the vertical, anteflexion, and rotational directions. The largest displacements in the vertical, anteflexion, and rotational directions were 0.38296 mm, 0.33976 mm, and 0.05064 mm, respectively. CONCLUSION: All these kinds of fixation met the mechanical criteria for clinical applications. The biomechanical analysis showed better bilateral balance with transsacral-transiliac screw fixation. The maximal displacement for these types of fixation was less than 1 mm. Percutaneous transsacral-transiliac screw fixation can be considered the best option among these kinds of fracture fixation.