Cargando…
Risk prediction in multicentre studies when there is confounding by cluster or informative cluster size
BACKGROUND: Clustered data arise in research when patients are clustered within larger units. Generalised Estimating Equations (GEE) and Generalised Linear Models (GLMM) can be used to provide marginal and cluster-specific inference and predictions, respectively. METHODS: Confounding by Cluster (CBC...
Autores principales: | Pavlou, Menelaos, Ambler, Gareth, Omar, Rumana Z. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8254921/ https://www.ncbi.nlm.nih.gov/pubmed/34218793 http://dx.doi.org/10.1186/s12874-021-01321-x |
Ejemplares similares
-
Review of methods for handling confounding by cluster and informative cluster size in clustered data
por: Seaman, Shaun, et al.
Publicado: (2014) -
Methods for Observed-Cluster Inference When Cluster Size Is Informative: A Review and Clarifications
por: Seaman, Shaun R, et al.
Publicado: (2014) -
How to develop a more accurate risk prediction model when there are few events
por: Pavlou, Menelaos, et al.
Publicado: (2015) -
A note on obtaining correct marginal predictions from a random intercepts model for binary outcomes
por: Pavlou, Menelaos, et al.
Publicado: (2015) -
Review and evaluation of penalised regression methods for risk prediction in low‐dimensional data with few events
por: Pavlou, Menelaos, et al.
Publicado: (2015)