Cargando…

Rapamycin reduces orofacial nociceptive responses and microglial p38 mitogen-activated protein kinase phosphorylation in trigeminal nucleus caudalis in mouse orofacial formalin model

The mammalian target of rapamycin (mTOR) plays a role in various cellular phenomena, including autophagy, cell proliferation, and differentiation. Although recent studies have reported its involvement in nociceptive responses in several pain models, whether mTOR is involved in orofacial pain process...

Descripción completa

Detalles Bibliográficos
Autores principales: Yeo, Ji-Hee, Kim, Sol-Ji, Roh, Dae-Hyun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Korean Physiological Society and The Korean Society of Pharmacology 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8255123/
https://www.ncbi.nlm.nih.gov/pubmed/34187953
http://dx.doi.org/10.4196/kjpp.2021.25.4.365
_version_ 1783717846311763968
author Yeo, Ji-Hee
Kim, Sol-Ji
Roh, Dae-Hyun
author_facet Yeo, Ji-Hee
Kim, Sol-Ji
Roh, Dae-Hyun
author_sort Yeo, Ji-Hee
collection PubMed
description The mammalian target of rapamycin (mTOR) plays a role in various cellular phenomena, including autophagy, cell proliferation, and differentiation. Although recent studies have reported its involvement in nociceptive responses in several pain models, whether mTOR is involved in orofacial pain processing is currently unexplored. This study determined whether rapamycin, an mTOR inhibitor, reduces nociceptive responses and the number of Fos-immunoreactive (Fos-ir) cells in the trigeminal nucleus caudalis (TNC) in a mouse orofacial formalin model. We also examined whether the glial cell expression and phosphorylated p38 (p-p38) mitogen-activated protein kinases (MAPKs) in the TNC are affected by rapamycin. Mice were intraperitoneally given rapamycin (0.1, 0.3, or 1.0 mg/kg); then, 30 min after, 5% formalin (10 µl) was subcutaneously injected into the right upper lip. The rubbing responses with the ipsilateral forepaw or hindpaw were counted for 45 min. High-dose rapamycin (1.0 mg/kg) produced significant antinociceptive effects in both the first and second phases of formalin test. The number of Fos-ir cells in the ipsilateral TNC was also reduced by high-dose rapamycin compared with vehicle-treated animals. Furthermore, the number of p-p38-ir cells the in ipsilateral TNC was significantly decreased in animals treated with high-dose rapamycin; p-p38 expression was co-localized in microglia, but not neurons and astrocytes. Therefore, the mTOR inhibitor, rapamycin, reduces orofacial nociception and Fos expression in the TNC, and its antinociceptive action on orofacial pain may be associated with the inhibition of p-p38 MAPK in the microglia.
format Online
Article
Text
id pubmed-8255123
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher The Korean Physiological Society and The Korean Society of Pharmacology
record_format MEDLINE/PubMed
spelling pubmed-82551232021-07-15 Rapamycin reduces orofacial nociceptive responses and microglial p38 mitogen-activated protein kinase phosphorylation in trigeminal nucleus caudalis in mouse orofacial formalin model Yeo, Ji-Hee Kim, Sol-Ji Roh, Dae-Hyun Korean J Physiol Pharmacol Original Article The mammalian target of rapamycin (mTOR) plays a role in various cellular phenomena, including autophagy, cell proliferation, and differentiation. Although recent studies have reported its involvement in nociceptive responses in several pain models, whether mTOR is involved in orofacial pain processing is currently unexplored. This study determined whether rapamycin, an mTOR inhibitor, reduces nociceptive responses and the number of Fos-immunoreactive (Fos-ir) cells in the trigeminal nucleus caudalis (TNC) in a mouse orofacial formalin model. We also examined whether the glial cell expression and phosphorylated p38 (p-p38) mitogen-activated protein kinases (MAPKs) in the TNC are affected by rapamycin. Mice were intraperitoneally given rapamycin (0.1, 0.3, or 1.0 mg/kg); then, 30 min after, 5% formalin (10 µl) was subcutaneously injected into the right upper lip. The rubbing responses with the ipsilateral forepaw or hindpaw were counted for 45 min. High-dose rapamycin (1.0 mg/kg) produced significant antinociceptive effects in both the first and second phases of formalin test. The number of Fos-ir cells in the ipsilateral TNC was also reduced by high-dose rapamycin compared with vehicle-treated animals. Furthermore, the number of p-p38-ir cells the in ipsilateral TNC was significantly decreased in animals treated with high-dose rapamycin; p-p38 expression was co-localized in microglia, but not neurons and astrocytes. Therefore, the mTOR inhibitor, rapamycin, reduces orofacial nociception and Fos expression in the TNC, and its antinociceptive action on orofacial pain may be associated with the inhibition of p-p38 MAPK in the microglia. The Korean Physiological Society and The Korean Society of Pharmacology 2021-07-01 2021-07-01 /pmc/articles/PMC8255123/ /pubmed/34187953 http://dx.doi.org/10.4196/kjpp.2021.25.4.365 Text en Copyright © Korean J Physiol Pharmacol https://creativecommons.org/licenses/by-nc/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0 (https://creativecommons.org/licenses/by-nc/4.0/) ) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Article
Yeo, Ji-Hee
Kim, Sol-Ji
Roh, Dae-Hyun
Rapamycin reduces orofacial nociceptive responses and microglial p38 mitogen-activated protein kinase phosphorylation in trigeminal nucleus caudalis in mouse orofacial formalin model
title Rapamycin reduces orofacial nociceptive responses and microglial p38 mitogen-activated protein kinase phosphorylation in trigeminal nucleus caudalis in mouse orofacial formalin model
title_full Rapamycin reduces orofacial nociceptive responses and microglial p38 mitogen-activated protein kinase phosphorylation in trigeminal nucleus caudalis in mouse orofacial formalin model
title_fullStr Rapamycin reduces orofacial nociceptive responses and microglial p38 mitogen-activated protein kinase phosphorylation in trigeminal nucleus caudalis in mouse orofacial formalin model
title_full_unstemmed Rapamycin reduces orofacial nociceptive responses and microglial p38 mitogen-activated protein kinase phosphorylation in trigeminal nucleus caudalis in mouse orofacial formalin model
title_short Rapamycin reduces orofacial nociceptive responses and microglial p38 mitogen-activated protein kinase phosphorylation in trigeminal nucleus caudalis in mouse orofacial formalin model
title_sort rapamycin reduces orofacial nociceptive responses and microglial p38 mitogen-activated protein kinase phosphorylation in trigeminal nucleus caudalis in mouse orofacial formalin model
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8255123/
https://www.ncbi.nlm.nih.gov/pubmed/34187953
http://dx.doi.org/10.4196/kjpp.2021.25.4.365
work_keys_str_mv AT yeojihee rapamycinreducesorofacialnociceptiveresponsesandmicroglialp38mitogenactivatedproteinkinasephosphorylationintrigeminalnucleuscaudalisinmouseorofacialformalinmodel
AT kimsolji rapamycinreducesorofacialnociceptiveresponsesandmicroglialp38mitogenactivatedproteinkinasephosphorylationintrigeminalnucleuscaudalisinmouseorofacialformalinmodel
AT rohdaehyun rapamycinreducesorofacialnociceptiveresponsesandmicroglialp38mitogenactivatedproteinkinasephosphorylationintrigeminalnucleuscaudalisinmouseorofacialformalinmodel