Cargando…
Convolutional Neural Net Learning Can Achieve Production-Level Brain Segmentation in Structural Magnetic Resonance Imaging
Deep learning implementations using convolutional neural nets have recently demonstrated promise in many areas of medical imaging. In this article we lay out the methods by which we have achieved consistently high quality, high throughput computation of intra-cranial segmentation from whole head mag...
Autores principales: | Fletcher, Evan, DeCarli, Charles, Fan, Audrey P., Knaack, Alexander |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8255694/ https://www.ncbi.nlm.nih.gov/pubmed/34234642 http://dx.doi.org/10.3389/fnins.2021.683426 |
Ejemplares similares
-
N-Net: A novel dense fully convolutional neural network for thyroid nodule segmentation
por: Nie, Xingqing, et al.
Publicado: (2022) -
Corrigendum: N-Net: A novel dense fully convolutional neural network for thyroid nodule segmentation
por: Nie, Xingqing, et al.
Publicado: (2022) -
Evaluation of Enhanced Learning Techniques for Segmenting Ischaemic Stroke Lesions in Brain Magnetic Resonance Perfusion Images Using a Convolutional Neural Network Scheme
por: Pérez Malla, Carlos Uziel, et al.
Publicado: (2019) -
Early Brain Loss in Circuits Affected by Alzheimer’s Disease is Predicted by Fornix Microstructure but may be Independent of Gray Matter
por: Fletcher, Evan, et al.
Publicado: (2014) -
Convolutional Neural Networks for Segmenting Cerebellar Fissures from Magnetic Resonance Imaging
por: Cabeza-Ruiz, Robin, et al.
Publicado: (2022)