Cargando…
Logically Inferred Tuberculosis Transmission (LITT): A Data Integration Algorithm to Rank Potential Source Cases
Understanding tuberculosis (TB) transmission chains can help public health staff target their resources to prevent further transmission, but currently there are few tools to automate this process. We have developed the Logically Inferred Tuberculosis Transmission (LITT) algorithm to systematize the...
Autores principales: | Winglee, Kathryn, McDaniel, Clinton J., Linde, Lauren, Kammerer, Steve, Cilnis, Martin, Raz, Kala M., Noboa, Wendy, Knorr, Jillian, Cowan, Lauren, Reynolds, Sue, Posey, James, Sullivan Meissner, Jeanne, Poonja, Shameer, Shaw, Tambi, Talarico, Sarah, Silk, Benjamin J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8255782/ https://www.ncbi.nlm.nih.gov/pubmed/34235130 http://dx.doi.org/10.3389/fpubh.2021.667337 |
Ejemplares similares
-
Mutation of Mycobacterium tuberculosis and Implications for Using Whole-Genome Sequencing for Investigating Recent Tuberculosis Transmission
por: Nelson, Kristin N., et al.
Publicado: (2022) -
Litt's Drug Eruption and Reaction Manual
por: De, Abhishek
Publicado: (2019) -
Donald West, MD, LittD, FRCPsych
por: Weeks, Jeffrey, et al.
Publicado: (2021) -
Is Node Disconnection the Key for Improving LITT Outcome?
por: King-Stephens, David
Publicado: (2022) -
14. DELAYED MRI RESPONSE TO LITT IN PATIENTS UNDERGOING IMMUNOTHERAPY
por: Hong, Christopher, et al.
Publicado: (2020)