Cargando…
Identification of Variable Importance for Predictions of Mortality From COVID-19 Using AI Models for Ontario, Canada
The Severe Acute Respiratory Syndrome Coronavirus 2 pandemic has challenged medical systems to the brink of collapse around the globe. In this paper, logistic regression and three other artificial intelligence models (XGBoost, Artificial Neural Network and Random Forest) are described and used to pr...
Autores principales: | Snider, Brett, McBean, Edward A., Yawney, John, Gadsden, S. Andrew, Patel, Bhumi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8255789/ https://www.ncbi.nlm.nih.gov/pubmed/34235131 http://dx.doi.org/10.3389/fpubh.2021.675766 |
Ejemplares similares
-
Corrigendum: Identification of Variable Importance for Predictions of Mortality From COVID-19 Using AI Models for Ontario, Canada
por: Snider, Brett, et al.
Publicado: (2021) -
Insights Into Co-Morbidity and Other Risk Factors Related to COVID-19 Within Ontario, Canada
por: Snider, Brett, et al.
Publicado: (2021) -
Corrigendum: Insights Into Co-Morbidity and Other Risk Factors Related to COVID-19 Within Ontario, Canada
por: Snider, Brett, et al.
Publicado: (2021) -
Use of AI to assess COVID-19 variant impacts on hospitalization, ICU, and death
por: Hilal, Waleed, et al.
Publicado: (2022) -
Asymptomatic Cases, the Hidden Challenge in Predicting COVID-19 Caseload Increases
por: Snider, Brett, et al.
Publicado: (2021)