Cargando…
Core Imaging Library - Part I: a versatile Python framework for tomographic imaging
We present the Core Imaging Library (CIL), an open-source Python framework for tomographic imaging with particular emphasis on reconstruction of challenging datasets. Conventional filtered back-projection reconstruction tends to be insufficient for highly noisy, incomplete, non-standard or multi-cha...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8255949/ https://www.ncbi.nlm.nih.gov/pubmed/34218673 http://dx.doi.org/10.1098/rsta.2020.0192 |
_version_ | 1783718018346385408 |
---|---|
author | Jørgensen, J. S. Ametova, E. Burca, G. Fardell, G. Papoutsellis, E. Pasca, E. Thielemans, K. Turner, M. Warr, R. Lionheart, W. R. B. Withers, P. J. |
author_facet | Jørgensen, J. S. Ametova, E. Burca, G. Fardell, G. Papoutsellis, E. Pasca, E. Thielemans, K. Turner, M. Warr, R. Lionheart, W. R. B. Withers, P. J. |
author_sort | Jørgensen, J. S. |
collection | PubMed |
description | We present the Core Imaging Library (CIL), an open-source Python framework for tomographic imaging with particular emphasis on reconstruction of challenging datasets. Conventional filtered back-projection reconstruction tends to be insufficient for highly noisy, incomplete, non-standard or multi-channel data arising for example in dynamic, spectral and in situ tomography. CIL provides an extensive modular optimization framework for prototyping reconstruction methods including sparsity and total variation regularization, as well as tools for loading, preprocessing and visualizing tomographic data. The capabilities of CIL are demonstrated on a synchrotron example dataset and three challenging cases spanning golden-ratio neutron tomography, cone-beam X-ray laminography and positron emission tomography. This article is part of the theme issue ‘Synergistic tomographic image reconstruction: part 2’. |
format | Online Article Text |
id | pubmed-8255949 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | The Royal Society Publishing |
record_format | MEDLINE/PubMed |
spelling | pubmed-82559492022-02-02 Core Imaging Library - Part I: a versatile Python framework for tomographic imaging Jørgensen, J. S. Ametova, E. Burca, G. Fardell, G. Papoutsellis, E. Pasca, E. Thielemans, K. Turner, M. Warr, R. Lionheart, W. R. B. Withers, P. J. Philos Trans A Math Phys Eng Sci Articles We present the Core Imaging Library (CIL), an open-source Python framework for tomographic imaging with particular emphasis on reconstruction of challenging datasets. Conventional filtered back-projection reconstruction tends to be insufficient for highly noisy, incomplete, non-standard or multi-channel data arising for example in dynamic, spectral and in situ tomography. CIL provides an extensive modular optimization framework for prototyping reconstruction methods including sparsity and total variation regularization, as well as tools for loading, preprocessing and visualizing tomographic data. The capabilities of CIL are demonstrated on a synchrotron example dataset and three challenging cases spanning golden-ratio neutron tomography, cone-beam X-ray laminography and positron emission tomography. This article is part of the theme issue ‘Synergistic tomographic image reconstruction: part 2’. The Royal Society Publishing 2021-08-23 2021-07-05 /pmc/articles/PMC8255949/ /pubmed/34218673 http://dx.doi.org/10.1098/rsta.2020.0192 Text en © 2021 The Authors. https://creativecommons.org/licenses/by/4.0/Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, provided the original author and source are credited. |
spellingShingle | Articles Jørgensen, J. S. Ametova, E. Burca, G. Fardell, G. Papoutsellis, E. Pasca, E. Thielemans, K. Turner, M. Warr, R. Lionheart, W. R. B. Withers, P. J. Core Imaging Library - Part I: a versatile Python framework for tomographic imaging |
title | Core Imaging Library - Part I: a versatile Python framework for tomographic imaging |
title_full | Core Imaging Library - Part I: a versatile Python framework for tomographic imaging |
title_fullStr | Core Imaging Library - Part I: a versatile Python framework for tomographic imaging |
title_full_unstemmed | Core Imaging Library - Part I: a versatile Python framework for tomographic imaging |
title_short | Core Imaging Library - Part I: a versatile Python framework for tomographic imaging |
title_sort | core imaging library - part i: a versatile python framework for tomographic imaging |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8255949/ https://www.ncbi.nlm.nih.gov/pubmed/34218673 http://dx.doi.org/10.1098/rsta.2020.0192 |
work_keys_str_mv | AT jørgensenjs coreimaginglibrarypartiaversatilepythonframeworkfortomographicimaging AT ametovae coreimaginglibrarypartiaversatilepythonframeworkfortomographicimaging AT burcag coreimaginglibrarypartiaversatilepythonframeworkfortomographicimaging AT fardellg coreimaginglibrarypartiaversatilepythonframeworkfortomographicimaging AT papoutsellise coreimaginglibrarypartiaversatilepythonframeworkfortomographicimaging AT pascae coreimaginglibrarypartiaversatilepythonframeworkfortomographicimaging AT thielemansk coreimaginglibrarypartiaversatilepythonframeworkfortomographicimaging AT turnerm coreimaginglibrarypartiaversatilepythonframeworkfortomographicimaging AT warrr coreimaginglibrarypartiaversatilepythonframeworkfortomographicimaging AT lionheartwrb coreimaginglibrarypartiaversatilepythonframeworkfortomographicimaging AT witherspj coreimaginglibrarypartiaversatilepythonframeworkfortomographicimaging |