Cargando…

Core Imaging Library - Part I: a versatile Python framework for tomographic imaging

We present the Core Imaging Library (CIL), an open-source Python framework for tomographic imaging with particular emphasis on reconstruction of challenging datasets. Conventional filtered back-projection reconstruction tends to be insufficient for highly noisy, incomplete, non-standard or multi-cha...

Descripción completa

Detalles Bibliográficos
Autores principales: Jørgensen, J. S., Ametova, E., Burca, G., Fardell, G., Papoutsellis, E., Pasca, E., Thielemans, K., Turner, M., Warr, R., Lionheart, W. R. B., Withers, P. J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society Publishing 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8255949/
https://www.ncbi.nlm.nih.gov/pubmed/34218673
http://dx.doi.org/10.1098/rsta.2020.0192
_version_ 1783718018346385408
author Jørgensen, J. S.
Ametova, E.
Burca, G.
Fardell, G.
Papoutsellis, E.
Pasca, E.
Thielemans, K.
Turner, M.
Warr, R.
Lionheart, W. R. B.
Withers, P. J.
author_facet Jørgensen, J. S.
Ametova, E.
Burca, G.
Fardell, G.
Papoutsellis, E.
Pasca, E.
Thielemans, K.
Turner, M.
Warr, R.
Lionheart, W. R. B.
Withers, P. J.
author_sort Jørgensen, J. S.
collection PubMed
description We present the Core Imaging Library (CIL), an open-source Python framework for tomographic imaging with particular emphasis on reconstruction of challenging datasets. Conventional filtered back-projection reconstruction tends to be insufficient for highly noisy, incomplete, non-standard or multi-channel data arising for example in dynamic, spectral and in situ tomography. CIL provides an extensive modular optimization framework for prototyping reconstruction methods including sparsity and total variation regularization, as well as tools for loading, preprocessing and visualizing tomographic data. The capabilities of CIL are demonstrated on a synchrotron example dataset and three challenging cases spanning golden-ratio neutron tomography, cone-beam X-ray laminography and positron emission tomography. This article is part of the theme issue ‘Synergistic tomographic image reconstruction: part 2’.
format Online
Article
Text
id pubmed-8255949
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher The Royal Society Publishing
record_format MEDLINE/PubMed
spelling pubmed-82559492022-02-02 Core Imaging Library - Part I: a versatile Python framework for tomographic imaging Jørgensen, J. S. Ametova, E. Burca, G. Fardell, G. Papoutsellis, E. Pasca, E. Thielemans, K. Turner, M. Warr, R. Lionheart, W. R. B. Withers, P. J. Philos Trans A Math Phys Eng Sci Articles We present the Core Imaging Library (CIL), an open-source Python framework for tomographic imaging with particular emphasis on reconstruction of challenging datasets. Conventional filtered back-projection reconstruction tends to be insufficient for highly noisy, incomplete, non-standard or multi-channel data arising for example in dynamic, spectral and in situ tomography. CIL provides an extensive modular optimization framework for prototyping reconstruction methods including sparsity and total variation regularization, as well as tools for loading, preprocessing and visualizing tomographic data. The capabilities of CIL are demonstrated on a synchrotron example dataset and three challenging cases spanning golden-ratio neutron tomography, cone-beam X-ray laminography and positron emission tomography. This article is part of the theme issue ‘Synergistic tomographic image reconstruction: part 2’. The Royal Society Publishing 2021-08-23 2021-07-05 /pmc/articles/PMC8255949/ /pubmed/34218673 http://dx.doi.org/10.1098/rsta.2020.0192 Text en © 2021 The Authors. https://creativecommons.org/licenses/by/4.0/Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, provided the original author and source are credited.
spellingShingle Articles
Jørgensen, J. S.
Ametova, E.
Burca, G.
Fardell, G.
Papoutsellis, E.
Pasca, E.
Thielemans, K.
Turner, M.
Warr, R.
Lionheart, W. R. B.
Withers, P. J.
Core Imaging Library - Part I: a versatile Python framework for tomographic imaging
title Core Imaging Library - Part I: a versatile Python framework for tomographic imaging
title_full Core Imaging Library - Part I: a versatile Python framework for tomographic imaging
title_fullStr Core Imaging Library - Part I: a versatile Python framework for tomographic imaging
title_full_unstemmed Core Imaging Library - Part I: a versatile Python framework for tomographic imaging
title_short Core Imaging Library - Part I: a versatile Python framework for tomographic imaging
title_sort core imaging library - part i: a versatile python framework for tomographic imaging
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8255949/
https://www.ncbi.nlm.nih.gov/pubmed/34218673
http://dx.doi.org/10.1098/rsta.2020.0192
work_keys_str_mv AT jørgensenjs coreimaginglibrarypartiaversatilepythonframeworkfortomographicimaging
AT ametovae coreimaginglibrarypartiaversatilepythonframeworkfortomographicimaging
AT burcag coreimaginglibrarypartiaversatilepythonframeworkfortomographicimaging
AT fardellg coreimaginglibrarypartiaversatilepythonframeworkfortomographicimaging
AT papoutsellise coreimaginglibrarypartiaversatilepythonframeworkfortomographicimaging
AT pascae coreimaginglibrarypartiaversatilepythonframeworkfortomographicimaging
AT thielemansk coreimaginglibrarypartiaversatilepythonframeworkfortomographicimaging
AT turnerm coreimaginglibrarypartiaversatilepythonframeworkfortomographicimaging
AT warrr coreimaginglibrarypartiaversatilepythonframeworkfortomographicimaging
AT lionheartwrb coreimaginglibrarypartiaversatilepythonframeworkfortomographicimaging
AT witherspj coreimaginglibrarypartiaversatilepythonframeworkfortomographicimaging