Cargando…

Obesity alters the ovarian proteomic response to zearalenone exposure

Zearalenone (ZEN), a nonsteroidal estrogenic mycotoxin, is detrimental to female reproduction. Altered chemical biotransformation, depleted primordial follicles and a blunted genotoxicant response have been discovered in obese female ovaries, thus, this study investigated the hypothesis that obesity...

Descripción completa

Detalles Bibliográficos
Autores principales: González-Alvarez, M Estefanía, McGuire, Bailey C, Keating, Aileen F
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8256104/
https://www.ncbi.nlm.nih.gov/pubmed/33855340
http://dx.doi.org/10.1093/biolre/ioab069
Descripción
Sumario:Zearalenone (ZEN), a nonsteroidal estrogenic mycotoxin, is detrimental to female reproduction. Altered chemical biotransformation, depleted primordial follicles and a blunted genotoxicant response have been discovered in obese female ovaries, thus, this study investigated the hypothesis that obesity would enhance ovarian sensitivity to ZEN exposure. Seven-week-old female wild-type nonagouti KK.Cg-a/a mice (lean) and agouti lethal yellow KK.Cg-Ay/J mice (obese) received food and water ad libitum, and either saline or ZEN (40 μg/kg) per os for 15 days. Body and organ weights, and estrous cyclicity were recorded, and ovaries collected posteuthanasia for protein analysis. Body and liver weights were increased (P < 0.05) in the obese mice, but obesity did not affect (P > 0.05) heart, kidney, spleen, uterus, or ovary weight and there was no impact (P > 0.05) of ZEN exposure on body or organ weight in lean or obese mice. Obese mice had shorter proestrus (P < 0.05) and a tendency (P = 0.055) for longer metestrus/diestrus. ZEN exposure in obese mice increased estrus but shortened metestrus/diestrus length. Neither obesity nor ZEN exposure impacted (P > 0.05) circulating progesterone, or ovarian abundance of EPHX1, GSTP1, CYP2E1, ATM, BRCA1, DNMT1, HDAC1, H4K16ac, or H3K9me3. Lean mice exposed to ZEN had a minor increase in γH2AX abundance (P < 0.05). In lean and obese mice, LC–MS/MS identified alterations to proteins involved in chemical metabolism, DNA repair and reproduction. These data identify ZEN-induced adverse ovarian modes of action and suggest that obesity is additive to ZEN-induced ovotoxicity.