Cargando…

Neural Correlates of Attentional Modulation of Prepulse Inhibition

Prepulse inhibition (PPI) refers to the suppression of the startle reflex when the intense startling stimulus is shortly (20–500 ms) preceded by a weak non-startling stimulus (prepulse). Although the main neural correlates of PPI lie in the brainstem, previous research has revealed that PPI can be t...

Descripción completa

Detalles Bibliográficos
Autores principales: Lei, Ming, Ding, Yu, Meng, Qingxin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8256268/
https://www.ncbi.nlm.nih.gov/pubmed/34234658
http://dx.doi.org/10.3389/fnhum.2021.649566
Descripción
Sumario:Prepulse inhibition (PPI) refers to the suppression of the startle reflex when the intense startling stimulus is shortly (20–500 ms) preceded by a weak non-startling stimulus (prepulse). Although the main neural correlates of PPI lie in the brainstem, previous research has revealed that PPI can be top-down modulated by attention. However, in the previous attend-to-prepulse PPI paradigm, only continuous prepulse but not discrete prepulse (20 ms) could elicit attentional modulation of PPI. Also, the relationship between the attentional enhancement of PPI and the changes in early cortical representations of prepulse signals is unclear. This study develops a novel attend-to-prepulse PPI task, when the discrete prepulse is set at 150 ms at a lead interval of 270 ms, and reveals that the PPI with attended prepulse is larger than the PPI with ignored prepulse. In addition, the early cortical representations (N1/P2 complex) of the prepulse show dissociation between the attended and ignored prepulse. N1 component is enhanced by directed attention, and the attentional increase of the N1 component is positively correlated with the attentional enhancement of PPI, whereas the P2 component is not affected by attentional modulation. Thus, directed attention to the prepulse can enhance both PPI and the early cortical representation of the prepulse signal (N1).