Cargando…
Distinct Extracellular RNA Profiles in Different Plasma Components
Circulating extracellular RNAs (exRNAs) have great potential to serve as biomarkers for a wide range of diagnostic, therapeutic, and prognostic applications. So far, knowledge of the difference among different sources of exRNAs is limited. To address this issue, we performed a sequential physical an...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8256274/ https://www.ncbi.nlm.nih.gov/pubmed/34234804 http://dx.doi.org/10.3389/fgene.2021.564780 |
_version_ | 1783718069876555776 |
---|---|
author | Jia, Jing Yang, Shangdong Huang, Jinyong Zheng, Hong He, Ying Wang, Liang |
author_facet | Jia, Jing Yang, Shangdong Huang, Jinyong Zheng, Hong He, Ying Wang, Liang |
author_sort | Jia, Jing |
collection | PubMed |
description | Circulating extracellular RNAs (exRNAs) have great potential to serve as biomarkers for a wide range of diagnostic, therapeutic, and prognostic applications. So far, knowledge of the difference among different sources of exRNAs is limited. To address this issue, we performed a sequential physical and biochemical precipitation to collect four fractions (platelets and cell debris, the thrombin-induced precipitates, extracellular vesicles, and supernatant) from each of 10 plasma samples. From total RNAs of the 40 fractions, we prepared ligation-free libraries to profile full spectrum of all RNA species, without size selection and rRNA reduction. Due to complicated RNA composition in these libraries, we utilized a successive stepwise alignment strategy to map the RNA sequences to different RNA categories, including miRNAs, piwi-interacting RNAs, tRNAs, rRNAs, lincRNAs, snoRNAs, snRNAs, other ncRNAs, protein coding RNAs, and circRNAs. Our data showed that each plasma fraction had its own unique distribution of RNA species. Hierarchical cluster analyses using transcript abundance demonstrated similarities in the same plasma fraction and significant differences between different fractions. In addition, we observed various unique transcripts, and novel predicted miRNAs among these plasma fractions. These results demonstrate that the distribution of RNA species and functional RNA transcripts is plasma fraction-dependent. Appropriate plasma preparation and thorough inspection of different plasma fractions are necessary for an exRNA-based biomarker study. |
format | Online Article Text |
id | pubmed-8256274 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-82562742021-07-06 Distinct Extracellular RNA Profiles in Different Plasma Components Jia, Jing Yang, Shangdong Huang, Jinyong Zheng, Hong He, Ying Wang, Liang Front Genet Genetics Circulating extracellular RNAs (exRNAs) have great potential to serve as biomarkers for a wide range of diagnostic, therapeutic, and prognostic applications. So far, knowledge of the difference among different sources of exRNAs is limited. To address this issue, we performed a sequential physical and biochemical precipitation to collect four fractions (platelets and cell debris, the thrombin-induced precipitates, extracellular vesicles, and supernatant) from each of 10 plasma samples. From total RNAs of the 40 fractions, we prepared ligation-free libraries to profile full spectrum of all RNA species, without size selection and rRNA reduction. Due to complicated RNA composition in these libraries, we utilized a successive stepwise alignment strategy to map the RNA sequences to different RNA categories, including miRNAs, piwi-interacting RNAs, tRNAs, rRNAs, lincRNAs, snoRNAs, snRNAs, other ncRNAs, protein coding RNAs, and circRNAs. Our data showed that each plasma fraction had its own unique distribution of RNA species. Hierarchical cluster analyses using transcript abundance demonstrated similarities in the same plasma fraction and significant differences between different fractions. In addition, we observed various unique transcripts, and novel predicted miRNAs among these plasma fractions. These results demonstrate that the distribution of RNA species and functional RNA transcripts is plasma fraction-dependent. Appropriate plasma preparation and thorough inspection of different plasma fractions are necessary for an exRNA-based biomarker study. Frontiers Media S.A. 2021-06-21 /pmc/articles/PMC8256274/ /pubmed/34234804 http://dx.doi.org/10.3389/fgene.2021.564780 Text en Copyright © 2021 Jia, Yang, Huang, Zheng, He and Wang. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Genetics Jia, Jing Yang, Shangdong Huang, Jinyong Zheng, Hong He, Ying Wang, Liang Distinct Extracellular RNA Profiles in Different Plasma Components |
title | Distinct Extracellular RNA Profiles in Different Plasma Components |
title_full | Distinct Extracellular RNA Profiles in Different Plasma Components |
title_fullStr | Distinct Extracellular RNA Profiles in Different Plasma Components |
title_full_unstemmed | Distinct Extracellular RNA Profiles in Different Plasma Components |
title_short | Distinct Extracellular RNA Profiles in Different Plasma Components |
title_sort | distinct extracellular rna profiles in different plasma components |
topic | Genetics |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8256274/ https://www.ncbi.nlm.nih.gov/pubmed/34234804 http://dx.doi.org/10.3389/fgene.2021.564780 |
work_keys_str_mv | AT jiajing distinctextracellularrnaprofilesindifferentplasmacomponents AT yangshangdong distinctextracellularrnaprofilesindifferentplasmacomponents AT huangjinyong distinctextracellularrnaprofilesindifferentplasmacomponents AT zhenghong distinctextracellularrnaprofilesindifferentplasmacomponents AT heying distinctextracellularrnaprofilesindifferentplasmacomponents AT wangliang distinctextracellularrnaprofilesindifferentplasmacomponents |